Machine Learning to Estimate the Mass-Diffusion Distance from a Point Source under Turbulent Conditions
Technologies that predict the sources of substances diffused in the atmosphere, ocean, and chemical plants are being researched in various fields. The flows transporting such substances are typically in turbulent states, and several problems including the nonlinearity of turbulence must be overcome...
Gespeichert in:
Veröffentlicht in: | Processes 2022-04, Vol.10 (5), p.860 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 860 |
container_title | Processes |
container_volume | 10 |
creator | Ishigami, Takahiro Irikura, Motoki Tsukahara, Takahiro |
description | Technologies that predict the sources of substances diffused in the atmosphere, ocean, and chemical plants are being researched in various fields. The flows transporting such substances are typically in turbulent states, and several problems including the nonlinearity of turbulence must be overcome to enable accurate estimations of diffusion-source location from limited observation data. We studied the feasibility of machine learning, specifically convolutional neural networks (CNNs), to the problem of estimating the diffusion distance from a point source, based on two-dimensional, instantaneous information of diffused-substance distributions downstream of the source. The input image data for the learner are the concentration (or luminance of fluorescent dye) distributions affected by turbulent motions of the transport medium. In order to verify our approach, we employed experimental data of a fully developed turbulent channel flow with a dye nozzle, wherein we attempted to estimate the distances between the dye nozzle and downstream observation windows. The inference accuracy of four different CNN architectures were investigated, and some achieved an accuracy of more than 90%. We confirmed the independence of the inference accuracy on the anisotropy (or rotation) of the image. The trained CNN can recognize the turbulent characteristics for estimating the diffusion source distance without statistical processing. The learners have a strong dependency on the condition of learning images, such as window size and image noise, implying that learning images should be carefully handled for obtaining higher generalization performance. |
doi_str_mv | 10.3390/pr10050860 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2670356672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722085125</galeid><sourcerecordid>A722085125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-b9418956e0e79002070bd58df7de518f50d9e08bd382446f4e8119a06a0885fd3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaKgVC_-goA3Yesku9lkj1I_oUVBPS_ZzaRG2qQm2YP_3kgFnTnM8HjvzfAIOWcwr-sOrnaRAQhQLRyQE865rDrJ5OG__ZicpfQBpTpWK9GekPVKj-_OI12ijt75Nc2B3qbstjojze9IVzql6sZZOyUXPL1xKWs_IrUxbKmmz8H5TF_CFAs2eYORvk5xmDZY4EXwxuUiS6fkyOpNwrPfOSNvd7evi4dq-XT_uLheVmMDkKuha5jqRIuAsgPgIGEwQhkrDQqmrADTIajB1Io3TWsbVIx1GloNSglr6hm52PvuYvicMOX-o7zmy8metxJq0baSF9Z8z1rrDfbO25CjHksb3LoxeLSu4NeSc1CCcVEEl3vBGENKEW2_iyWi-NUz6H_C7__Cr78BsEZ1sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670356672</pqid></control><display><type>article</type><title>Machine Learning to Estimate the Mass-Diffusion Distance from a Point Source under Turbulent Conditions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Ishigami, Takahiro ; Irikura, Motoki ; Tsukahara, Takahiro</creator><creatorcontrib>Ishigami, Takahiro ; Irikura, Motoki ; Tsukahara, Takahiro</creatorcontrib><description>Technologies that predict the sources of substances diffused in the atmosphere, ocean, and chemical plants are being researched in various fields. The flows transporting such substances are typically in turbulent states, and several problems including the nonlinearity of turbulence must be overcome to enable accurate estimations of diffusion-source location from limited observation data. We studied the feasibility of machine learning, specifically convolutional neural networks (CNNs), to the problem of estimating the diffusion distance from a point source, based on two-dimensional, instantaneous information of diffused-substance distributions downstream of the source. The input image data for the learner are the concentration (or luminance of fluorescent dye) distributions affected by turbulent motions of the transport medium. In order to verify our approach, we employed experimental data of a fully developed turbulent channel flow with a dye nozzle, wherein we attempted to estimate the distances between the dye nozzle and downstream observation windows. The inference accuracy of four different CNN architectures were investigated, and some achieved an accuracy of more than 90%. We confirmed the independence of the inference accuracy on the anisotropy (or rotation) of the image. The trained CNN can recognize the turbulent characteristics for estimating the diffusion source distance without statistical processing. The learners have a strong dependency on the condition of learning images, such as window size and image noise, implying that learning images should be carefully handled for obtaining higher generalization performance.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr10050860</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Anisotropy ; Artificial intelligence ; Artificial neural networks ; Cameras ; Channel flow ; Chemical plants ; Data assimilation ; Deep learning ; Diffusion ; Dyes ; Feasibility studies ; Fluorescent dyes ; Fluorescent indicators ; Inference ; Learning algorithms ; Machine learning ; Methods ; Neural networks ; Nonlinear systems ; Nozzles ; Outdoor air quality ; Pollution ; Reynolds number ; Sensors ; Simulation ; Transport media ; Turbulence ; Turbulence models ; Turbulent flow</subject><ispartof>Processes, 2022-04, Vol.10 (5), p.860</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-b9418956e0e79002070bd58df7de518f50d9e08bd382446f4e8119a06a0885fd3</citedby><cites>FETCH-LOGICAL-c400t-b9418956e0e79002070bd58df7de518f50d9e08bd382446f4e8119a06a0885fd3</cites><orcidid>0000-0001-8126-9578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ishigami, Takahiro</creatorcontrib><creatorcontrib>Irikura, Motoki</creatorcontrib><creatorcontrib>Tsukahara, Takahiro</creatorcontrib><title>Machine Learning to Estimate the Mass-Diffusion Distance from a Point Source under Turbulent Conditions</title><title>Processes</title><description>Technologies that predict the sources of substances diffused in the atmosphere, ocean, and chemical plants are being researched in various fields. The flows transporting such substances are typically in turbulent states, and several problems including the nonlinearity of turbulence must be overcome to enable accurate estimations of diffusion-source location from limited observation data. We studied the feasibility of machine learning, specifically convolutional neural networks (CNNs), to the problem of estimating the diffusion distance from a point source, based on two-dimensional, instantaneous information of diffused-substance distributions downstream of the source. The input image data for the learner are the concentration (or luminance of fluorescent dye) distributions affected by turbulent motions of the transport medium. In order to verify our approach, we employed experimental data of a fully developed turbulent channel flow with a dye nozzle, wherein we attempted to estimate the distances between the dye nozzle and downstream observation windows. The inference accuracy of four different CNN architectures were investigated, and some achieved an accuracy of more than 90%. We confirmed the independence of the inference accuracy on the anisotropy (or rotation) of the image. The trained CNN can recognize the turbulent characteristics for estimating the diffusion source distance without statistical processing. The learners have a strong dependency on the condition of learning images, such as window size and image noise, implying that learning images should be carefully handled for obtaining higher generalization performance.</description><subject>Accuracy</subject><subject>Anisotropy</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Channel flow</subject><subject>Chemical plants</subject><subject>Data assimilation</subject><subject>Deep learning</subject><subject>Diffusion</subject><subject>Dyes</subject><subject>Feasibility studies</subject><subject>Fluorescent dyes</subject><subject>Fluorescent indicators</subject><subject>Inference</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Nozzles</subject><subject>Outdoor air quality</subject><subject>Pollution</subject><subject>Reynolds number</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Transport media</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUE1LAzEQDaKgVC_-goA3Yesku9lkj1I_oUVBPS_ZzaRG2qQm2YP_3kgFnTnM8HjvzfAIOWcwr-sOrnaRAQhQLRyQE865rDrJ5OG__ZicpfQBpTpWK9GekPVKj-_OI12ijt75Nc2B3qbstjojze9IVzql6sZZOyUXPL1xKWs_IrUxbKmmz8H5TF_CFAs2eYORvk5xmDZY4EXwxuUiS6fkyOpNwrPfOSNvd7evi4dq-XT_uLheVmMDkKuha5jqRIuAsgPgIGEwQhkrDQqmrADTIajB1Io3TWsbVIx1GloNSglr6hm52PvuYvicMOX-o7zmy8metxJq0baSF9Z8z1rrDfbO25CjHksb3LoxeLSu4NeSc1CCcVEEl3vBGENKEW2_iyWi-NUz6H_C7__Cr78BsEZ1sQ</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>Ishigami, Takahiro</creator><creator>Irikura, Motoki</creator><creator>Tsukahara, Takahiro</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8126-9578</orcidid></search><sort><creationdate>20220426</creationdate><title>Machine Learning to Estimate the Mass-Diffusion Distance from a Point Source under Turbulent Conditions</title><author>Ishigami, Takahiro ; Irikura, Motoki ; Tsukahara, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-b9418956e0e79002070bd58df7de518f50d9e08bd382446f4e8119a06a0885fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Anisotropy</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Channel flow</topic><topic>Chemical plants</topic><topic>Data assimilation</topic><topic>Deep learning</topic><topic>Diffusion</topic><topic>Dyes</topic><topic>Feasibility studies</topic><topic>Fluorescent dyes</topic><topic>Fluorescent indicators</topic><topic>Inference</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Nozzles</topic><topic>Outdoor air quality</topic><topic>Pollution</topic><topic>Reynolds number</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Transport media</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishigami, Takahiro</creatorcontrib><creatorcontrib>Irikura, Motoki</creatorcontrib><creatorcontrib>Tsukahara, Takahiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishigami, Takahiro</au><au>Irikura, Motoki</au><au>Tsukahara, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning to Estimate the Mass-Diffusion Distance from a Point Source under Turbulent Conditions</atitle><jtitle>Processes</jtitle><date>2022-04-26</date><risdate>2022</risdate><volume>10</volume><issue>5</issue><spage>860</spage><pages>860-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Technologies that predict the sources of substances diffused in the atmosphere, ocean, and chemical plants are being researched in various fields. The flows transporting such substances are typically in turbulent states, and several problems including the nonlinearity of turbulence must be overcome to enable accurate estimations of diffusion-source location from limited observation data. We studied the feasibility of machine learning, specifically convolutional neural networks (CNNs), to the problem of estimating the diffusion distance from a point source, based on two-dimensional, instantaneous information of diffused-substance distributions downstream of the source. The input image data for the learner are the concentration (or luminance of fluorescent dye) distributions affected by turbulent motions of the transport medium. In order to verify our approach, we employed experimental data of a fully developed turbulent channel flow with a dye nozzle, wherein we attempted to estimate the distances between the dye nozzle and downstream observation windows. The inference accuracy of four different CNN architectures were investigated, and some achieved an accuracy of more than 90%. We confirmed the independence of the inference accuracy on the anisotropy (or rotation) of the image. The trained CNN can recognize the turbulent characteristics for estimating the diffusion source distance without statistical processing. The learners have a strong dependency on the condition of learning images, such as window size and image noise, implying that learning images should be carefully handled for obtaining higher generalization performance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr10050860</doi><orcidid>https://orcid.org/0000-0001-8126-9578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2022-04, Vol.10 (5), p.860 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2670356672 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Anisotropy Artificial intelligence Artificial neural networks Cameras Channel flow Chemical plants Data assimilation Deep learning Diffusion Dyes Feasibility studies Fluorescent dyes Fluorescent indicators Inference Learning algorithms Machine learning Methods Neural networks Nonlinear systems Nozzles Outdoor air quality Pollution Reynolds number Sensors Simulation Transport media Turbulence Turbulence models Turbulent flow |
title | Machine Learning to Estimate the Mass-Diffusion Distance from a Point Source under Turbulent Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20to%20Estimate%20the%20Mass-Diffusion%20Distance%20from%20a%20Point%20Source%20under%20Turbulent%20Conditions&rft.jtitle=Processes&rft.au=Ishigami,%20Takahiro&rft.date=2022-04-26&rft.volume=10&rft.issue=5&rft.spage=860&rft.pages=860-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr10050860&rft_dat=%3Cgale_proqu%3EA722085125%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670356672&rft_id=info:pmid/&rft_galeid=A722085125&rfr_iscdi=true |