Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems
The adaptive practical optimal time-varying formation tracking problems of the disturbed high-order multi-agent systems with a noncooperative leader are considered. Different from the former achievements, the effects of the leader's unknown control input and followers' external disturbance...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-06, Vol.69 (6), p.2567-2578 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2578 |
---|---|
container_issue | 6 |
container_start_page | 2567 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 69 |
creator | Yu, Jianglong Dong, Xiwang Li, Qingdong Lu, Jinhu Ren, Zhang |
description | The adaptive practical optimal time-varying formation tracking problems of the disturbed high-order multi-agent systems with a noncooperative leader are considered. Different from the former achievements, the effects of the leader's unknown control input and followers' external disturbances are both considered in the optimal time-varying formation tracking issues. Firstly, an adaptive practical optimal time-varying formation tracking protocol is proposed. The extended state observers and adaptive neural networks are introduced to estimate the integrated uncertainty and value function for the adaptive protocol, respectively. Then, an algorithm is presented to determine the control parameters for the adaptive optimal protocol and neural networks weights update laws. Thirdly, the stability and the optimal formation tracking property are analyzed for the closed loop disturbed high-order multi-agent system. Finally, the numerical simulation results are presented for revealing the effectiveness of the obtained theoretical methods. |
doi_str_mv | 10.1109/TCSI.2022.3151464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2670204668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9718582</ieee_id><sourcerecordid>2670204668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-786dd4dc19446a96f396ccc27431d974368ec9cb97cdde4c4950ed9de3e5cc653</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxRdRsFY_gHgJeN6af5tNjqVaW6hUaPW6bJPZmrrd1CQr9Nu7S4uXecPjzQzzS5J7gkeEYPW0nqzmI4opHTGSES74RTIgWSZTLLG47HuuUsmovE5uQthhTBVmZJC4sSkP0f4CeveljlaXNVp2xr7Ttd1D-ln6o222aOr8vozWNWjdBb97a-Ka6F2NKufRsw2x9RswaGa3X-nSG_Dora2jTcdbaCJaHUOEfbhNrqqyDnB31mHyMX1ZT2bpYvk6n4wXqaaKxTSXwhhuNFGci1KJiimhtaY5Z8SorgoJWumNyrUxwDVXGQajDDDItBYZGyaPp70H735aCLHYudY33cmCihxTzIWQXYqcUtq7EDxUxcF3r_tjQXDRcy16rkXPtThz7WYeTjMWAP7zKicyk5T9ARd9dUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670204668</pqid></control><display><type>article</type><title>Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Jianglong ; Dong, Xiwang ; Li, Qingdong ; Lu, Jinhu ; Ren, Zhang</creator><creatorcontrib>Yu, Jianglong ; Dong, Xiwang ; Li, Qingdong ; Lu, Jinhu ; Ren, Zhang</creatorcontrib><description>The adaptive practical optimal time-varying formation tracking problems of the disturbed high-order multi-agent systems with a noncooperative leader are considered. Different from the former achievements, the effects of the leader's unknown control input and followers' external disturbances are both considered in the optimal time-varying formation tracking issues. Firstly, an adaptive practical optimal time-varying formation tracking protocol is proposed. The extended state observers and adaptive neural networks are introduced to estimate the integrated uncertainty and value function for the adaptive protocol, respectively. Then, an algorithm is presented to determine the control parameters for the adaptive optimal protocol and neural networks weights update laws. Thirdly, the stability and the optimal formation tracking property are analyzed for the closed loop disturbed high-order multi-agent system. Finally, the numerical simulation results are presented for revealing the effectiveness of the obtained theoretical methods.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2022.3151464</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; adaptive optimal control ; Adaptive systems ; Algorithms ; Closed loops ; multi-agent system ; Multi-agent systems ; Multiagent systems ; Neural networks ; Optimal control ; optimal formation tracking ; Protocols ; Stability analysis ; State observers ; Time-varying formation control ; Time-varying systems ; Tracking control ; Uncertainty ; Upper bound</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2022-06, Vol.69 (6), p.2567-2578</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-786dd4dc19446a96f396ccc27431d974368ec9cb97cdde4c4950ed9de3e5cc653</citedby><cites>FETCH-LOGICAL-c293t-786dd4dc19446a96f396ccc27431d974368ec9cb97cdde4c4950ed9de3e5cc653</cites><orcidid>0000-0002-6109-4085 ; 0000-0003-4817-6841 ; 0000-0002-4778-248X ; 0000-0003-0275-8387 ; 0000-0002-7861-2731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9718582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9718582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Jianglong</creatorcontrib><creatorcontrib>Dong, Xiwang</creatorcontrib><creatorcontrib>Li, Qingdong</creatorcontrib><creatorcontrib>Lu, Jinhu</creatorcontrib><creatorcontrib>Ren, Zhang</creatorcontrib><title>Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>The adaptive practical optimal time-varying formation tracking problems of the disturbed high-order multi-agent systems with a noncooperative leader are considered. Different from the former achievements, the effects of the leader's unknown control input and followers' external disturbances are both considered in the optimal time-varying formation tracking issues. Firstly, an adaptive practical optimal time-varying formation tracking protocol is proposed. The extended state observers and adaptive neural networks are introduced to estimate the integrated uncertainty and value function for the adaptive protocol, respectively. Then, an algorithm is presented to determine the control parameters for the adaptive optimal protocol and neural networks weights update laws. Thirdly, the stability and the optimal formation tracking property are analyzed for the closed loop disturbed high-order multi-agent system. Finally, the numerical simulation results are presented for revealing the effectiveness of the obtained theoretical methods.</description><subject>Adaptive control</subject><subject>adaptive optimal control</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Closed loops</subject><subject>multi-agent system</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>optimal formation tracking</subject><subject>Protocols</subject><subject>Stability analysis</subject><subject>State observers</subject><subject>Time-varying formation control</subject><subject>Time-varying systems</subject><subject>Tracking control</subject><subject>Uncertainty</subject><subject>Upper bound</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxRdRsFY_gHgJeN6af5tNjqVaW6hUaPW6bJPZmrrd1CQr9Nu7S4uXecPjzQzzS5J7gkeEYPW0nqzmI4opHTGSES74RTIgWSZTLLG47HuuUsmovE5uQthhTBVmZJC4sSkP0f4CeveljlaXNVp2xr7Ttd1D-ln6o222aOr8vozWNWjdBb97a-Ka6F2NKufRsw2x9RswaGa3X-nSG_Dora2jTcdbaCJaHUOEfbhNrqqyDnB31mHyMX1ZT2bpYvk6n4wXqaaKxTSXwhhuNFGci1KJiimhtaY5Z8SorgoJWumNyrUxwDVXGQajDDDItBYZGyaPp70H735aCLHYudY33cmCihxTzIWQXYqcUtq7EDxUxcF3r_tjQXDRcy16rkXPtThz7WYeTjMWAP7zKicyk5T9ARd9dUk</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yu, Jianglong</creator><creator>Dong, Xiwang</creator><creator>Li, Qingdong</creator><creator>Lu, Jinhu</creator><creator>Ren, Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6109-4085</orcidid><orcidid>https://orcid.org/0000-0003-4817-6841</orcidid><orcidid>https://orcid.org/0000-0002-4778-248X</orcidid><orcidid>https://orcid.org/0000-0003-0275-8387</orcidid><orcidid>https://orcid.org/0000-0002-7861-2731</orcidid></search><sort><creationdate>20220601</creationdate><title>Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems</title><author>Yu, Jianglong ; Dong, Xiwang ; Li, Qingdong ; Lu, Jinhu ; Ren, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-786dd4dc19446a96f396ccc27431d974368ec9cb97cdde4c4950ed9de3e5cc653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>adaptive optimal control</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Closed loops</topic><topic>multi-agent system</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>optimal formation tracking</topic><topic>Protocols</topic><topic>Stability analysis</topic><topic>State observers</topic><topic>Time-varying formation control</topic><topic>Time-varying systems</topic><topic>Tracking control</topic><topic>Uncertainty</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jianglong</creatorcontrib><creatorcontrib>Dong, Xiwang</creatorcontrib><creatorcontrib>Li, Qingdong</creatorcontrib><creatorcontrib>Lu, Jinhu</creatorcontrib><creatorcontrib>Ren, Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Jianglong</au><au>Dong, Xiwang</au><au>Li, Qingdong</au><au>Lu, Jinhu</au><au>Ren, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>69</volume><issue>6</issue><spage>2567</spage><epage>2578</epage><pages>2567-2578</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>The adaptive practical optimal time-varying formation tracking problems of the disturbed high-order multi-agent systems with a noncooperative leader are considered. Different from the former achievements, the effects of the leader's unknown control input and followers' external disturbances are both considered in the optimal time-varying formation tracking issues. Firstly, an adaptive practical optimal time-varying formation tracking protocol is proposed. The extended state observers and adaptive neural networks are introduced to estimate the integrated uncertainty and value function for the adaptive protocol, respectively. Then, an algorithm is presented to determine the control parameters for the adaptive optimal protocol and neural networks weights update laws. Thirdly, the stability and the optimal formation tracking property are analyzed for the closed loop disturbed high-order multi-agent system. Finally, the numerical simulation results are presented for revealing the effectiveness of the obtained theoretical methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2022.3151464</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6109-4085</orcidid><orcidid>https://orcid.org/0000-0003-4817-6841</orcidid><orcidid>https://orcid.org/0000-0002-4778-248X</orcidid><orcidid>https://orcid.org/0000-0003-0275-8387</orcidid><orcidid>https://orcid.org/0000-0002-7861-2731</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2022-06, Vol.69 (6), p.2567-2578 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_proquest_journals_2670204668 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control adaptive optimal control Adaptive systems Algorithms Closed loops multi-agent system Multi-agent systems Multiagent systems Neural networks Optimal control optimal formation tracking Protocols Stability analysis State observers Time-varying formation control Time-varying systems Tracking control Uncertainty Upper bound |
title | Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Practical%20Optimal%20Time-Varying%20Formation%20Tracking%20Control%20for%20Disturbed%20High-Order%20Multi-Agent%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Yu,%20Jianglong&rft.date=2022-06-01&rft.volume=69&rft.issue=6&rft.spage=2567&rft.epage=2578&rft.pages=2567-2578&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2022.3151464&rft_dat=%3Cproquest_RIE%3E2670204668%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670204668&rft_id=info:pmid/&rft_ieee_id=9718582&rfr_iscdi=true |