Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems

The adaptive practical optimal time-varying formation tracking problems of the disturbed high-order multi-agent systems with a noncooperative leader are considered. Different from the former achievements, the effects of the leader's unknown control input and followers' external disturbance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-06, Vol.69 (6), p.2567-2578
Hauptverfasser: Yu, Jianglong, Dong, Xiwang, Li, Qingdong, Lu, Jinhu, Ren, Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2578
container_issue 6
container_start_page 2567
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 69
creator Yu, Jianglong
Dong, Xiwang
Li, Qingdong
Lu, Jinhu
Ren, Zhang
description The adaptive practical optimal time-varying formation tracking problems of the disturbed high-order multi-agent systems with a noncooperative leader are considered. Different from the former achievements, the effects of the leader's unknown control input and followers' external disturbances are both considered in the optimal time-varying formation tracking issues. Firstly, an adaptive practical optimal time-varying formation tracking protocol is proposed. The extended state observers and adaptive neural networks are introduced to estimate the integrated uncertainty and value function for the adaptive protocol, respectively. Then, an algorithm is presented to determine the control parameters for the adaptive optimal protocol and neural networks weights update laws. Thirdly, the stability and the optimal formation tracking property are analyzed for the closed loop disturbed high-order multi-agent system. Finally, the numerical simulation results are presented for revealing the effectiveness of the obtained theoretical methods.
doi_str_mv 10.1109/TCSI.2022.3151464
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2670204668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9718582</ieee_id><sourcerecordid>2670204668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-786dd4dc19446a96f396ccc27431d974368ec9cb97cdde4c4950ed9de3e5cc653</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxRdRsFY_gHgJeN6af5tNjqVaW6hUaPW6bJPZmrrd1CQr9Nu7S4uXecPjzQzzS5J7gkeEYPW0nqzmI4opHTGSES74RTIgWSZTLLG47HuuUsmovE5uQthhTBVmZJC4sSkP0f4CeveljlaXNVp2xr7Ttd1D-ln6o222aOr8vozWNWjdBb97a-Ka6F2NKufRsw2x9RswaGa3X-nSG_Dora2jTcdbaCJaHUOEfbhNrqqyDnB31mHyMX1ZT2bpYvk6n4wXqaaKxTSXwhhuNFGci1KJiimhtaY5Z8SorgoJWumNyrUxwDVXGQajDDDItBYZGyaPp70H735aCLHYudY33cmCihxTzIWQXYqcUtq7EDxUxcF3r_tjQXDRcy16rkXPtThz7WYeTjMWAP7zKicyk5T9ARd9dUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670204668</pqid></control><display><type>article</type><title>Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Jianglong ; Dong, Xiwang ; Li, Qingdong ; Lu, Jinhu ; Ren, Zhang</creator><creatorcontrib>Yu, Jianglong ; Dong, Xiwang ; Li, Qingdong ; Lu, Jinhu ; Ren, Zhang</creatorcontrib><description>The adaptive practical optimal time-varying formation tracking problems of the disturbed high-order multi-agent systems with a noncooperative leader are considered. Different from the former achievements, the effects of the leader's unknown control input and followers' external disturbances are both considered in the optimal time-varying formation tracking issues. Firstly, an adaptive practical optimal time-varying formation tracking protocol is proposed. The extended state observers and adaptive neural networks are introduced to estimate the integrated uncertainty and value function for the adaptive protocol, respectively. Then, an algorithm is presented to determine the control parameters for the adaptive optimal protocol and neural networks weights update laws. Thirdly, the stability and the optimal formation tracking property are analyzed for the closed loop disturbed high-order multi-agent system. Finally, the numerical simulation results are presented for revealing the effectiveness of the obtained theoretical methods.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2022.3151464</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; adaptive optimal control ; Adaptive systems ; Algorithms ; Closed loops ; multi-agent system ; Multi-agent systems ; Multiagent systems ; Neural networks ; Optimal control ; optimal formation tracking ; Protocols ; Stability analysis ; State observers ; Time-varying formation control ; Time-varying systems ; Tracking control ; Uncertainty ; Upper bound</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2022-06, Vol.69 (6), p.2567-2578</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-786dd4dc19446a96f396ccc27431d974368ec9cb97cdde4c4950ed9de3e5cc653</citedby><cites>FETCH-LOGICAL-c293t-786dd4dc19446a96f396ccc27431d974368ec9cb97cdde4c4950ed9de3e5cc653</cites><orcidid>0000-0002-6109-4085 ; 0000-0003-4817-6841 ; 0000-0002-4778-248X ; 0000-0003-0275-8387 ; 0000-0002-7861-2731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9718582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9718582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Jianglong</creatorcontrib><creatorcontrib>Dong, Xiwang</creatorcontrib><creatorcontrib>Li, Qingdong</creatorcontrib><creatorcontrib>Lu, Jinhu</creatorcontrib><creatorcontrib>Ren, Zhang</creatorcontrib><title>Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>The adaptive practical optimal time-varying formation tracking problems of the disturbed high-order multi-agent systems with a noncooperative leader are considered. Different from the former achievements, the effects of the leader's unknown control input and followers' external disturbances are both considered in the optimal time-varying formation tracking issues. Firstly, an adaptive practical optimal time-varying formation tracking protocol is proposed. The extended state observers and adaptive neural networks are introduced to estimate the integrated uncertainty and value function for the adaptive protocol, respectively. Then, an algorithm is presented to determine the control parameters for the adaptive optimal protocol and neural networks weights update laws. Thirdly, the stability and the optimal formation tracking property are analyzed for the closed loop disturbed high-order multi-agent system. Finally, the numerical simulation results are presented for revealing the effectiveness of the obtained theoretical methods.</description><subject>Adaptive control</subject><subject>adaptive optimal control</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Closed loops</subject><subject>multi-agent system</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>optimal formation tracking</subject><subject>Protocols</subject><subject>Stability analysis</subject><subject>State observers</subject><subject>Time-varying formation control</subject><subject>Time-varying systems</subject><subject>Tracking control</subject><subject>Uncertainty</subject><subject>Upper bound</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxRdRsFY_gHgJeN6af5tNjqVaW6hUaPW6bJPZmrrd1CQr9Nu7S4uXecPjzQzzS5J7gkeEYPW0nqzmI4opHTGSES74RTIgWSZTLLG47HuuUsmovE5uQthhTBVmZJC4sSkP0f4CeveljlaXNVp2xr7Ttd1D-ln6o222aOr8vozWNWjdBb97a-Ka6F2NKufRsw2x9RswaGa3X-nSG_Dora2jTcdbaCJaHUOEfbhNrqqyDnB31mHyMX1ZT2bpYvk6n4wXqaaKxTSXwhhuNFGci1KJiimhtaY5Z8SorgoJWumNyrUxwDVXGQajDDDItBYZGyaPp70H735aCLHYudY33cmCihxTzIWQXYqcUtq7EDxUxcF3r_tjQXDRcy16rkXPtThz7WYeTjMWAP7zKicyk5T9ARd9dUk</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yu, Jianglong</creator><creator>Dong, Xiwang</creator><creator>Li, Qingdong</creator><creator>Lu, Jinhu</creator><creator>Ren, Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6109-4085</orcidid><orcidid>https://orcid.org/0000-0003-4817-6841</orcidid><orcidid>https://orcid.org/0000-0002-4778-248X</orcidid><orcidid>https://orcid.org/0000-0003-0275-8387</orcidid><orcidid>https://orcid.org/0000-0002-7861-2731</orcidid></search><sort><creationdate>20220601</creationdate><title>Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems</title><author>Yu, Jianglong ; Dong, Xiwang ; Li, Qingdong ; Lu, Jinhu ; Ren, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-786dd4dc19446a96f396ccc27431d974368ec9cb97cdde4c4950ed9de3e5cc653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>adaptive optimal control</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Closed loops</topic><topic>multi-agent system</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>optimal formation tracking</topic><topic>Protocols</topic><topic>Stability analysis</topic><topic>State observers</topic><topic>Time-varying formation control</topic><topic>Time-varying systems</topic><topic>Tracking control</topic><topic>Uncertainty</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jianglong</creatorcontrib><creatorcontrib>Dong, Xiwang</creatorcontrib><creatorcontrib>Li, Qingdong</creatorcontrib><creatorcontrib>Lu, Jinhu</creatorcontrib><creatorcontrib>Ren, Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Jianglong</au><au>Dong, Xiwang</au><au>Li, Qingdong</au><au>Lu, Jinhu</au><au>Ren, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>69</volume><issue>6</issue><spage>2567</spage><epage>2578</epage><pages>2567-2578</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>The adaptive practical optimal time-varying formation tracking problems of the disturbed high-order multi-agent systems with a noncooperative leader are considered. Different from the former achievements, the effects of the leader's unknown control input and followers' external disturbances are both considered in the optimal time-varying formation tracking issues. Firstly, an adaptive practical optimal time-varying formation tracking protocol is proposed. The extended state observers and adaptive neural networks are introduced to estimate the integrated uncertainty and value function for the adaptive protocol, respectively. Then, an algorithm is presented to determine the control parameters for the adaptive optimal protocol and neural networks weights update laws. Thirdly, the stability and the optimal formation tracking property are analyzed for the closed loop disturbed high-order multi-agent system. Finally, the numerical simulation results are presented for revealing the effectiveness of the obtained theoretical methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2022.3151464</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6109-4085</orcidid><orcidid>https://orcid.org/0000-0003-4817-6841</orcidid><orcidid>https://orcid.org/0000-0002-4778-248X</orcidid><orcidid>https://orcid.org/0000-0003-0275-8387</orcidid><orcidid>https://orcid.org/0000-0002-7861-2731</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2022-06, Vol.69 (6), p.2567-2578
issn 1549-8328
1558-0806
language eng
recordid cdi_proquest_journals_2670204668
source IEEE Electronic Library (IEL)
subjects Adaptive control
adaptive optimal control
Adaptive systems
Algorithms
Closed loops
multi-agent system
Multi-agent systems
Multiagent systems
Neural networks
Optimal control
optimal formation tracking
Protocols
Stability analysis
State observers
Time-varying formation control
Time-varying systems
Tracking control
Uncertainty
Upper bound
title Adaptive Practical Optimal Time-Varying Formation Tracking Control for Disturbed High-Order Multi-Agent Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Practical%20Optimal%20Time-Varying%20Formation%20Tracking%20Control%20for%20Disturbed%20High-Order%20Multi-Agent%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Yu,%20Jianglong&rft.date=2022-06-01&rft.volume=69&rft.issue=6&rft.spage=2567&rft.epage=2578&rft.pages=2567-2578&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2022.3151464&rft_dat=%3Cproquest_RIE%3E2670204668%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670204668&rft_id=info:pmid/&rft_ieee_id=9718582&rfr_iscdi=true