Deep partial hedging
Using techniques from deep learning, we show that neural networks can be trained successfully to replicate the modified payoff functions that were first derived in the context of partial hedging by Föllmer and Leukert. Not only does this approach better accommodate the realistic setting of hedging i...
Gespeichert in:
Veröffentlicht in: | Journal of risk and financial management 2022-01, Vol.15 (5), p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Journal of risk and financial management |
container_volume | 15 |
creator | Hou, Songyan Krabichler, Thomas Wunsch, Marcus |
description | Using techniques from deep learning, we show that neural networks can be trained successfully to replicate the modified payoff functions that were first derived in the context of partial hedging by Föllmer and Leukert. Not only does this approach better accommodate the realistic setting of hedging in discrete time, it also allows for the inclusion of transaction costs as well as general market dynamics. It needs to be noted that, without further modifications, the approach works only if the risk aversion is beyond a certain level. |
doi_str_mv | 10.3390/jrfm15050223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670200757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670200757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2523-85d56242c04b21d3d95543008c1918a0299bbbfe3194421971e352e5fd26b6a83</originalsourceid><addsrcrecordid>eNpVzzFPwzAQBWALgURVunVFisRK4Hxnx_aICgWkSiwwW07ilERtEux04N-TKkiU6d3w3Z0eY0sOd0QG7ptQ7bkECYh0xmbccJ5qUOL8ZL5kixgbAOAw7pCeseWj933SuzDUbpd8-nJbt9srdlG5XfSL35yzj_XT--ol3bw9v64eNmmBEinVspQZCixA5MhLKo2UggB0MT7UDtCYPM8rT9wIgdwo7kmil1WJWZ45TXN2M93tQ_d18HGwTXcI7fjSYqYAAZRUo7qdVBG6GIOvbB_qvQvfloM9Vren1UeeTNwXXVvHP6zBGOIig5Fc_yPHiEMXLCqhhKQfK7Zb9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670200757</pqid></control><display><type>article</type><title>Deep partial hedging</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hou, Songyan ; Krabichler, Thomas ; Wunsch, Marcus</creator><creatorcontrib>Hou, Songyan ; Krabichler, Thomas ; Wunsch, Marcus</creatorcontrib><description>Using techniques from deep learning, we show that neural networks can be trained successfully to replicate the modified payoff functions that were first derived in the context of partial hedging by Föllmer and Leukert. Not only does this approach better accommodate the realistic setting of hedging in discrete time, it also allows for the inclusion of transaction costs as well as general market dynamics. It needs to be noted that, without further modifications, the approach works only if the risk aversion is beyond a certain level.</description><identifier>ISSN: 1911-8074</identifier><identifier>ISSN: 1911-8066</identifier><identifier>EISSN: 1911-8074</identifier><identifier>DOI: 10.3390/jrfm15050223</identifier><language>eng</language><publisher>Basel: MDPI</publisher><subject>Bankruptcy ; Brownian motion ; Conflicts of interest ; Costs ; Hedging ; machine learning ; market frictions ; Neural networks ; partial hedging ; Risk aversion ; risk management ; transaction costs ; Volatility</subject><ispartof>Journal of risk and financial management, 2022-01, Vol.15 (5), p.1-5</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2523-85d56242c04b21d3d95543008c1918a0299bbbfe3194421971e352e5fd26b6a83</cites><orcidid>0000-0001-8094-3110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hou, Songyan</creatorcontrib><creatorcontrib>Krabichler, Thomas</creatorcontrib><creatorcontrib>Wunsch, Marcus</creatorcontrib><title>Deep partial hedging</title><title>Journal of risk and financial management</title><description>Using techniques from deep learning, we show that neural networks can be trained successfully to replicate the modified payoff functions that were first derived in the context of partial hedging by Föllmer and Leukert. Not only does this approach better accommodate the realistic setting of hedging in discrete time, it also allows for the inclusion of transaction costs as well as general market dynamics. It needs to be noted that, without further modifications, the approach works only if the risk aversion is beyond a certain level.</description><subject>Bankruptcy</subject><subject>Brownian motion</subject><subject>Conflicts of interest</subject><subject>Costs</subject><subject>Hedging</subject><subject>machine learning</subject><subject>market frictions</subject><subject>Neural networks</subject><subject>partial hedging</subject><subject>Risk aversion</subject><subject>risk management</subject><subject>transaction costs</subject><subject>Volatility</subject><issn>1911-8074</issn><issn>1911-8066</issn><issn>1911-8074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVzzFPwzAQBWALgURVunVFisRK4Hxnx_aICgWkSiwwW07ilERtEux04N-TKkiU6d3w3Z0eY0sOd0QG7ptQ7bkECYh0xmbccJ5qUOL8ZL5kixgbAOAw7pCeseWj933SuzDUbpd8-nJbt9srdlG5XfSL35yzj_XT--ol3bw9v64eNmmBEinVspQZCixA5MhLKo2UggB0MT7UDtCYPM8rT9wIgdwo7kmil1WJWZ45TXN2M93tQ_d18HGwTXcI7fjSYqYAAZRUo7qdVBG6GIOvbB_qvQvfloM9Vren1UeeTNwXXVvHP6zBGOIig5Fc_yPHiEMXLCqhhKQfK7Zb9g</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Hou, Songyan</creator><creator>Krabichler, Thomas</creator><creator>Wunsch, Marcus</creator><general>MDPI</general><general>MDPI AG</general><scope>OT2</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8094-3110</orcidid></search><sort><creationdate>20220101</creationdate><title>Deep partial hedging</title><author>Hou, Songyan ; Krabichler, Thomas ; Wunsch, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2523-85d56242c04b21d3d95543008c1918a0299bbbfe3194421971e352e5fd26b6a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bankruptcy</topic><topic>Brownian motion</topic><topic>Conflicts of interest</topic><topic>Costs</topic><topic>Hedging</topic><topic>machine learning</topic><topic>market frictions</topic><topic>Neural networks</topic><topic>partial hedging</topic><topic>Risk aversion</topic><topic>risk management</topic><topic>transaction costs</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Songyan</creatorcontrib><creatorcontrib>Krabichler, Thomas</creatorcontrib><creatorcontrib>Wunsch, Marcus</creatorcontrib><collection>EconStor</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of risk and financial management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Songyan</au><au>Krabichler, Thomas</au><au>Wunsch, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep partial hedging</atitle><jtitle>Journal of risk and financial management</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>15</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1911-8074</issn><issn>1911-8066</issn><eissn>1911-8074</eissn><abstract>Using techniques from deep learning, we show that neural networks can be trained successfully to replicate the modified payoff functions that were first derived in the context of partial hedging by Föllmer and Leukert. Not only does this approach better accommodate the realistic setting of hedging in discrete time, it also allows for the inclusion of transaction costs as well as general market dynamics. It needs to be noted that, without further modifications, the approach works only if the risk aversion is beyond a certain level.</abstract><cop>Basel</cop><pub>MDPI</pub><doi>10.3390/jrfm15050223</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8094-3110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1911-8074 |
ispartof | Journal of risk and financial management, 2022-01, Vol.15 (5), p.1-5 |
issn | 1911-8074 1911-8066 1911-8074 |
language | eng |
recordid | cdi_proquest_journals_2670200757 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Bankruptcy Brownian motion Conflicts of interest Costs Hedging machine learning market frictions Neural networks partial hedging Risk aversion risk management transaction costs Volatility |
title | Deep partial hedging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20partial%20hedging&rft.jtitle=Journal%20of%20risk%20and%20financial%20management&rft.au=Hou,%20Songyan&rft.date=2022-01-01&rft.volume=15&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1911-8074&rft.eissn=1911-8074&rft_id=info:doi/10.3390/jrfm15050223&rft_dat=%3Cproquest_cross%3E2670200757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670200757&rft_id=info:pmid/&rfr_iscdi=true |