Exploration of the Interactions between Maltase–Glucoamylase and Its Potential Peptide Inhibitors by Molecular Dynamics Simulation

Diabetes mellitus, a chronic metabolic disorder, represents a serious threat to human health. The gut enzyme maltase–glucoamylase (MGAM) has attracted considerable attention as a potential therapeutic target for the treatment of type 2 diabetes. Thus, developing novel inhibitors of MGAM holds the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2022-05, Vol.12 (5), p.522
Hauptverfasser: Guan, Shanshan, Han, Xu, Li, Zhan, Xu, Xifei, Cui, Yongran, Chen, Zhiwen, Zhang, Shuming, Chen, Shi, Shan, Yaming, Wang, Song, Li, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 522
container_title Catalysts
container_volume 12
creator Guan, Shanshan
Han, Xu
Li, Zhan
Xu, Xifei
Cui, Yongran
Chen, Zhiwen
Zhang, Shuming
Chen, Shi
Shan, Yaming
Wang, Song
Li, Hao
description Diabetes mellitus, a chronic metabolic disorder, represents a serious threat to human health. The gut enzyme maltase–glucoamylase (MGAM) has attracted considerable attention as a potential therapeutic target for the treatment of type 2 diabetes. Thus, developing novel inhibitors of MGAM holds the promise of improving clinical management. The dipeptides, Thr-Trp (TW) and Trp-Ala (WA), are known inhibitors of MGAM; however, studies on how they interact with MGAM are lacking. The work presented here explored these interactions by utilizing molecular docking and molecular dynamics simulations. Results indicate that the active center of the MGAM could easily accommodate the flexible peptides. Interactions involving hydrogen bonds, cation-π, and hydrophobic interactions are predicted between TW/WA and residues including Tyr1251, Trp1355, Asp1420, Met1421, Glu1423, and Arg1510 within MGAM. The electrostatic energy was recognized as playing a dominant role in both TW-MGAM and WA-MGAM systems. The binding locations of TW/WA are close to the possible acid-base catalytic residue Asp1526 and might be the reason for MGAM inhibition. These findings provide a theoretical structural model for the development of future inhibitors.
doi_str_mv 10.3390/catal12050522
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670144116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670144116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-339d3bdda314352f474da15ddff1519d46803590c2a6b48dde694ef484f222883</originalsourceid><addsrcrecordid>eNpVUE1Lw0AUXETBUnv0vuA5ul9Jk6PUWgstFtRz2OwH3bLJxt0NmpsH_4H_0F9iQj3ou7z3hmGGGQAuMbqmtEA3gkduMUEpSgk5AROC5jRhlLHTP_c5mIVwQMMUmOY4nYDP5XtrnefRuAY6DeNewXUTledihAKsVHxTqoFbbiMP6vvja2U74Xjd2-GFvJFwHQPcuaiaaLiFO9VGI0eVvalMdH7Q6OHWWSU6yz286xteGxHgk6kHYHS5AGea26Bmv3sKXu6Xz4uHZPO4Wi9uN4nABYrJkFPSSkpOMaMp0WzOJMeplFrjFBeSZTmiaYEE4VnFcilVVjClWc40ISTP6RRcHXVb7147FWJ5cJ1vBsuSZHOEGcM4G1jJkSW8C8ErXbbe1Nz3JUbl2HX5r2v6A_pZdTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670144116</pqid></control><display><type>article</type><title>Exploration of the Interactions between Maltase–Glucoamylase and Its Potential Peptide Inhibitors by Molecular Dynamics Simulation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Guan, Shanshan ; Han, Xu ; Li, Zhan ; Xu, Xifei ; Cui, Yongran ; Chen, Zhiwen ; Zhang, Shuming ; Chen, Shi ; Shan, Yaming ; Wang, Song ; Li, Hao</creator><creatorcontrib>Guan, Shanshan ; Han, Xu ; Li, Zhan ; Xu, Xifei ; Cui, Yongran ; Chen, Zhiwen ; Zhang, Shuming ; Chen, Shi ; Shan, Yaming ; Wang, Song ; Li, Hao</creatorcontrib><description>Diabetes mellitus, a chronic metabolic disorder, represents a serious threat to human health. The gut enzyme maltase–glucoamylase (MGAM) has attracted considerable attention as a potential therapeutic target for the treatment of type 2 diabetes. Thus, developing novel inhibitors of MGAM holds the promise of improving clinical management. The dipeptides, Thr-Trp (TW) and Trp-Ala (WA), are known inhibitors of MGAM; however, studies on how they interact with MGAM are lacking. The work presented here explored these interactions by utilizing molecular docking and molecular dynamics simulations. Results indicate that the active center of the MGAM could easily accommodate the flexible peptides. Interactions involving hydrogen bonds, cation-π, and hydrophobic interactions are predicted between TW/WA and residues including Tyr1251, Trp1355, Asp1420, Met1421, Glu1423, and Arg1510 within MGAM. The electrostatic energy was recognized as playing a dominant role in both TW-MGAM and WA-MGAM systems. The binding locations of TW/WA are close to the possible acid-base catalytic residue Asp1526 and might be the reason for MGAM inhibition. These findings provide a theoretical structural model for the development of future inhibitors.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal12050522</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Catalysts ; Chemical reactions ; Cluster analysis ; Diabetes ; Diabetes mellitus ; Glucoamylase ; Hydrogen bonds ; Hydrophobicity ; Hyperglycemia ; Insulin resistance ; Metabolic disorders ; Molecular docking ; Molecular dynamics ; Peptides ; Residues ; Simulation ; Structural models</subject><ispartof>Catalysts, 2022-05, Vol.12 (5), p.522</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c190t-339d3bdda314352f474da15ddff1519d46803590c2a6b48dde694ef484f222883</cites><orcidid>0000-0001-8373-6088 ; 0000-0002-4821-9461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Guan, Shanshan</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Li, Zhan</creatorcontrib><creatorcontrib>Xu, Xifei</creatorcontrib><creatorcontrib>Cui, Yongran</creatorcontrib><creatorcontrib>Chen, Zhiwen</creatorcontrib><creatorcontrib>Zhang, Shuming</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Shan, Yaming</creatorcontrib><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><title>Exploration of the Interactions between Maltase–Glucoamylase and Its Potential Peptide Inhibitors by Molecular Dynamics Simulation</title><title>Catalysts</title><description>Diabetes mellitus, a chronic metabolic disorder, represents a serious threat to human health. The gut enzyme maltase–glucoamylase (MGAM) has attracted considerable attention as a potential therapeutic target for the treatment of type 2 diabetes. Thus, developing novel inhibitors of MGAM holds the promise of improving clinical management. The dipeptides, Thr-Trp (TW) and Trp-Ala (WA), are known inhibitors of MGAM; however, studies on how they interact with MGAM are lacking. The work presented here explored these interactions by utilizing molecular docking and molecular dynamics simulations. Results indicate that the active center of the MGAM could easily accommodate the flexible peptides. Interactions involving hydrogen bonds, cation-π, and hydrophobic interactions are predicted between TW/WA and residues including Tyr1251, Trp1355, Asp1420, Met1421, Glu1423, and Arg1510 within MGAM. The electrostatic energy was recognized as playing a dominant role in both TW-MGAM and WA-MGAM systems. The binding locations of TW/WA are close to the possible acid-base catalytic residue Asp1526 and might be the reason for MGAM inhibition. These findings provide a theoretical structural model for the development of future inhibitors.</description><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Cluster analysis</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Glucoamylase</subject><subject>Hydrogen bonds</subject><subject>Hydrophobicity</subject><subject>Hyperglycemia</subject><subject>Insulin resistance</subject><subject>Metabolic disorders</subject><subject>Molecular docking</subject><subject>Molecular dynamics</subject><subject>Peptides</subject><subject>Residues</subject><subject>Simulation</subject><subject>Structural models</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVUE1Lw0AUXETBUnv0vuA5ul9Jk6PUWgstFtRz2OwH3bLJxt0NmpsH_4H_0F9iQj3ou7z3hmGGGQAuMbqmtEA3gkduMUEpSgk5AROC5jRhlLHTP_c5mIVwQMMUmOY4nYDP5XtrnefRuAY6DeNewXUTledihAKsVHxTqoFbbiMP6vvja2U74Xjd2-GFvJFwHQPcuaiaaLiFO9VGI0eVvalMdH7Q6OHWWSU6yz286xteGxHgk6kHYHS5AGea26Bmv3sKXu6Xz4uHZPO4Wi9uN4nABYrJkFPSSkpOMaMp0WzOJMeplFrjFBeSZTmiaYEE4VnFcilVVjClWc40ISTP6RRcHXVb7147FWJ5cJ1vBsuSZHOEGcM4G1jJkSW8C8ErXbbe1Nz3JUbl2HX5r2v6A_pZdTs</recordid><startdate>20220507</startdate><enddate>20220507</enddate><creator>Guan, Shanshan</creator><creator>Han, Xu</creator><creator>Li, Zhan</creator><creator>Xu, Xifei</creator><creator>Cui, Yongran</creator><creator>Chen, Zhiwen</creator><creator>Zhang, Shuming</creator><creator>Chen, Shi</creator><creator>Shan, Yaming</creator><creator>Wang, Song</creator><creator>Li, Hao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8373-6088</orcidid><orcidid>https://orcid.org/0000-0002-4821-9461</orcidid></search><sort><creationdate>20220507</creationdate><title>Exploration of the Interactions between Maltase–Glucoamylase and Its Potential Peptide Inhibitors by Molecular Dynamics Simulation</title><author>Guan, Shanshan ; Han, Xu ; Li, Zhan ; Xu, Xifei ; Cui, Yongran ; Chen, Zhiwen ; Zhang, Shuming ; Chen, Shi ; Shan, Yaming ; Wang, Song ; Li, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-339d3bdda314352f474da15ddff1519d46803590c2a6b48dde694ef484f222883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Cluster analysis</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Glucoamylase</topic><topic>Hydrogen bonds</topic><topic>Hydrophobicity</topic><topic>Hyperglycemia</topic><topic>Insulin resistance</topic><topic>Metabolic disorders</topic><topic>Molecular docking</topic><topic>Molecular dynamics</topic><topic>Peptides</topic><topic>Residues</topic><topic>Simulation</topic><topic>Structural models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Shanshan</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Li, Zhan</creatorcontrib><creatorcontrib>Xu, Xifei</creatorcontrib><creatorcontrib>Cui, Yongran</creatorcontrib><creatorcontrib>Chen, Zhiwen</creatorcontrib><creatorcontrib>Zhang, Shuming</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Shan, Yaming</creatorcontrib><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Shanshan</au><au>Han, Xu</au><au>Li, Zhan</au><au>Xu, Xifei</au><au>Cui, Yongran</au><au>Chen, Zhiwen</au><au>Zhang, Shuming</au><au>Chen, Shi</au><au>Shan, Yaming</au><au>Wang, Song</au><au>Li, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploration of the Interactions between Maltase–Glucoamylase and Its Potential Peptide Inhibitors by Molecular Dynamics Simulation</atitle><jtitle>Catalysts</jtitle><date>2022-05-07</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>522</spage><pages>522-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>Diabetes mellitus, a chronic metabolic disorder, represents a serious threat to human health. The gut enzyme maltase–glucoamylase (MGAM) has attracted considerable attention as a potential therapeutic target for the treatment of type 2 diabetes. Thus, developing novel inhibitors of MGAM holds the promise of improving clinical management. The dipeptides, Thr-Trp (TW) and Trp-Ala (WA), are known inhibitors of MGAM; however, studies on how they interact with MGAM are lacking. The work presented here explored these interactions by utilizing molecular docking and molecular dynamics simulations. Results indicate that the active center of the MGAM could easily accommodate the flexible peptides. Interactions involving hydrogen bonds, cation-π, and hydrophobic interactions are predicted between TW/WA and residues including Tyr1251, Trp1355, Asp1420, Met1421, Glu1423, and Arg1510 within MGAM. The electrostatic energy was recognized as playing a dominant role in both TW-MGAM and WA-MGAM systems. The binding locations of TW/WA are close to the possible acid-base catalytic residue Asp1526 and might be the reason for MGAM inhibition. These findings provide a theoretical structural model for the development of future inhibitors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal12050522</doi><orcidid>https://orcid.org/0000-0001-8373-6088</orcidid><orcidid>https://orcid.org/0000-0002-4821-9461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2022-05, Vol.12 (5), p.522
issn 2073-4344
2073-4344
language eng
recordid cdi_proquest_journals_2670144116
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Catalysts
Chemical reactions
Cluster analysis
Diabetes
Diabetes mellitus
Glucoamylase
Hydrogen bonds
Hydrophobicity
Hyperglycemia
Insulin resistance
Metabolic disorders
Molecular docking
Molecular dynamics
Peptides
Residues
Simulation
Structural models
title Exploration of the Interactions between Maltase–Glucoamylase and Its Potential Peptide Inhibitors by Molecular Dynamics Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploration%20of%20the%20Interactions%20between%20Maltase%E2%80%93Glucoamylase%20and%20Its%20Potential%20Peptide%20Inhibitors%20by%20Molecular%20Dynamics%20Simulation&rft.jtitle=Catalysts&rft.au=Guan,%20Shanshan&rft.date=2022-05-07&rft.volume=12&rft.issue=5&rft.spage=522&rft.pages=522-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal12050522&rft_dat=%3Cproquest_cross%3E2670144116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670144116&rft_id=info:pmid/&rfr_iscdi=true