Expressway Speed Prediction Based on Electronic Toll Collection Data
Expressway section speed can visually reflect the section operation condition, and accurate short time section speed prediction has a wide range of applications in path planning and traffic guidance. However, existing expressway speed prediction data have defects, such as sparse density and incomple...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-05, Vol.11 (10), p.1613 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1613 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Zou, Fumin Ren, Qiang Tian, Junshan Guo, Feng Huang, Shibin Liao, Lyuchao Wu, Jinshan |
description | Expressway section speed can visually reflect the section operation condition, and accurate short time section speed prediction has a wide range of applications in path planning and traffic guidance. However, existing expressway speed prediction data have defects, such as sparse density and incomplete object challenges. Thus, this paper proposes a framework for a combined expressway traffic speed prediction model based on wavelet transform and spatial-temporal graph convolutional network (WSTGCN) of the Electronic Toll Collection (ETC) gantry transaction data. First, the framework pre-processes the ETC gantry transaction data to construct the section speeds. Then wavelet decomposition and single-branch reconstruction are performed on the section speed sequences, and the spatial features are captured by graph convolutional network (GCN) for each reconstructed single-branch sequence, and the temporal features are extracted by connecting the gated recurrent unit (GRU). The experiments use the ETC gantry transaction data of the expressway from Quanzhou to Xiamen. The results indicate that the WSTGCN model makes notable improvements compared to the model of the baseline for different prediction ranges. |
doi_str_mv | 10.3390/electronics11101613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670135374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670135374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2373-c4f47e546c8e9af635cf2041514ec1cd5ad2cc7b8138dd0e7310ea331c3aafce3</originalsourceid><addsrcrecordid>eNptkE9LxEAMxQdRcFn3E3gpeK5OJm2nPWq3_oEFBddzGTMpdKltnemi--0dqYgHc0ge4UdeeEKcg7xELOQVd0yTG_qWPABIyACPxEJJXcSFKtTxH30qVt7vZKgCMEe5EOvqc3Ts_Yc5RM8js42eHNuWpnbooxvjwyKI6tci2g5dF5Wh8cyszWTOxEljOs-rn7kUL7fVtryPN493D-X1JiaFGmNKmkRzmmSUc2GaDFNqlEwghYQJyKbGKiL9moffrJWsESQbRCA0piHGpbiY745ueN-zn-rdsHd9sKxVpiVgijoJFM4UucF7x009uvbNuEMNsv5OrP4nMfwCtZJhnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670135374</pqid></control><display><type>article</type><title>Expressway Speed Prediction Based on Electronic Toll Collection Data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zou, Fumin ; Ren, Qiang ; Tian, Junshan ; Guo, Feng ; Huang, Shibin ; Liao, Lyuchao ; Wu, Jinshan</creator><creatorcontrib>Zou, Fumin ; Ren, Qiang ; Tian, Junshan ; Guo, Feng ; Huang, Shibin ; Liao, Lyuchao ; Wu, Jinshan</creatorcontrib><description>Expressway section speed can visually reflect the section operation condition, and accurate short time section speed prediction has a wide range of applications in path planning and traffic guidance. However, existing expressway speed prediction data have defects, such as sparse density and incomplete object challenges. Thus, this paper proposes a framework for a combined expressway traffic speed prediction model based on wavelet transform and spatial-temporal graph convolutional network (WSTGCN) of the Electronic Toll Collection (ETC) gantry transaction data. First, the framework pre-processes the ETC gantry transaction data to construct the section speeds. Then wavelet decomposition and single-branch reconstruction are performed on the section speed sequences, and the spatial features are captured by graph convolutional network (GCN) for each reconstructed single-branch sequence, and the temporal features are extracted by connecting the gated recurrent unit (GRU). The experiments use the ETC gantry transaction data of the expressway from Quanzhou to Xiamen. The results indicate that the WSTGCN model makes notable improvements compared to the model of the baseline for different prediction ranges.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11101613</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Deep learning ; Feature extraction ; Highways ; Machine learning ; Path planning ; Prediction models ; Tolls ; Traffic congestion ; Traffic flow ; Traffic models ; Traffic planning ; Traffic speed ; Wavelet transforms</subject><ispartof>Electronics (Basel), 2022-05, Vol.11 (10), p.1613</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2373-c4f47e546c8e9af635cf2041514ec1cd5ad2cc7b8138dd0e7310ea331c3aafce3</citedby><cites>FETCH-LOGICAL-c2373-c4f47e546c8e9af635cf2041514ec1cd5ad2cc7b8138dd0e7310ea331c3aafce3</cites><orcidid>0000-0002-3923-5232 ; 0000-0001-5337-9083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zou, Fumin</creatorcontrib><creatorcontrib>Ren, Qiang</creatorcontrib><creatorcontrib>Tian, Junshan</creatorcontrib><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Huang, Shibin</creatorcontrib><creatorcontrib>Liao, Lyuchao</creatorcontrib><creatorcontrib>Wu, Jinshan</creatorcontrib><title>Expressway Speed Prediction Based on Electronic Toll Collection Data</title><title>Electronics (Basel)</title><description>Expressway section speed can visually reflect the section operation condition, and accurate short time section speed prediction has a wide range of applications in path planning and traffic guidance. However, existing expressway speed prediction data have defects, such as sparse density and incomplete object challenges. Thus, this paper proposes a framework for a combined expressway traffic speed prediction model based on wavelet transform and spatial-temporal graph convolutional network (WSTGCN) of the Electronic Toll Collection (ETC) gantry transaction data. First, the framework pre-processes the ETC gantry transaction data to construct the section speeds. Then wavelet decomposition and single-branch reconstruction are performed on the section speed sequences, and the spatial features are captured by graph convolutional network (GCN) for each reconstructed single-branch sequence, and the temporal features are extracted by connecting the gated recurrent unit (GRU). The experiments use the ETC gantry transaction data of the expressway from Quanzhou to Xiamen. The results indicate that the WSTGCN model makes notable improvements compared to the model of the baseline for different prediction ranges.</description><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Highways</subject><subject>Machine learning</subject><subject>Path planning</subject><subject>Prediction models</subject><subject>Tolls</subject><subject>Traffic congestion</subject><subject>Traffic flow</subject><subject>Traffic models</subject><subject>Traffic planning</subject><subject>Traffic speed</subject><subject>Wavelet transforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE9LxEAMxQdRcFn3E3gpeK5OJm2nPWq3_oEFBddzGTMpdKltnemi--0dqYgHc0ge4UdeeEKcg7xELOQVd0yTG_qWPABIyACPxEJJXcSFKtTxH30qVt7vZKgCMEe5EOvqc3Ts_Yc5RM8js42eHNuWpnbooxvjwyKI6tci2g5dF5Wh8cyszWTOxEljOs-rn7kUL7fVtryPN493D-X1JiaFGmNKmkRzmmSUc2GaDFNqlEwghYQJyKbGKiL9moffrJWsESQbRCA0piHGpbiY745ueN-zn-rdsHd9sKxVpiVgijoJFM4UucF7x009uvbNuEMNsv5OrP4nMfwCtZJhnQ</recordid><startdate>20220518</startdate><enddate>20220518</enddate><creator>Zou, Fumin</creator><creator>Ren, Qiang</creator><creator>Tian, Junshan</creator><creator>Guo, Feng</creator><creator>Huang, Shibin</creator><creator>Liao, Lyuchao</creator><creator>Wu, Jinshan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3923-5232</orcidid><orcidid>https://orcid.org/0000-0001-5337-9083</orcidid></search><sort><creationdate>20220518</creationdate><title>Expressway Speed Prediction Based on Electronic Toll Collection Data</title><author>Zou, Fumin ; Ren, Qiang ; Tian, Junshan ; Guo, Feng ; Huang, Shibin ; Liao, Lyuchao ; Wu, Jinshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2373-c4f47e546c8e9af635cf2041514ec1cd5ad2cc7b8138dd0e7310ea331c3aafce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Highways</topic><topic>Machine learning</topic><topic>Path planning</topic><topic>Prediction models</topic><topic>Tolls</topic><topic>Traffic congestion</topic><topic>Traffic flow</topic><topic>Traffic models</topic><topic>Traffic planning</topic><topic>Traffic speed</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Fumin</creatorcontrib><creatorcontrib>Ren, Qiang</creatorcontrib><creatorcontrib>Tian, Junshan</creatorcontrib><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Huang, Shibin</creatorcontrib><creatorcontrib>Liao, Lyuchao</creatorcontrib><creatorcontrib>Wu, Jinshan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Fumin</au><au>Ren, Qiang</au><au>Tian, Junshan</au><au>Guo, Feng</au><au>Huang, Shibin</au><au>Liao, Lyuchao</au><au>Wu, Jinshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expressway Speed Prediction Based on Electronic Toll Collection Data</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-05-18</date><risdate>2022</risdate><volume>11</volume><issue>10</issue><spage>1613</spage><pages>1613-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Expressway section speed can visually reflect the section operation condition, and accurate short time section speed prediction has a wide range of applications in path planning and traffic guidance. However, existing expressway speed prediction data have defects, such as sparse density and incomplete object challenges. Thus, this paper proposes a framework for a combined expressway traffic speed prediction model based on wavelet transform and spatial-temporal graph convolutional network (WSTGCN) of the Electronic Toll Collection (ETC) gantry transaction data. First, the framework pre-processes the ETC gantry transaction data to construct the section speeds. Then wavelet decomposition and single-branch reconstruction are performed on the section speed sequences, and the spatial features are captured by graph convolutional network (GCN) for each reconstructed single-branch sequence, and the temporal features are extracted by connecting the gated recurrent unit (GRU). The experiments use the ETC gantry transaction data of the expressway from Quanzhou to Xiamen. The results indicate that the WSTGCN model makes notable improvements compared to the model of the baseline for different prediction ranges.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11101613</doi><orcidid>https://orcid.org/0000-0002-3923-5232</orcidid><orcidid>https://orcid.org/0000-0001-5337-9083</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-05, Vol.11 (10), p.1613 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2670135374 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Deep learning Feature extraction Highways Machine learning Path planning Prediction models Tolls Traffic congestion Traffic flow Traffic models Traffic planning Traffic speed Wavelet transforms |
title | Expressway Speed Prediction Based on Electronic Toll Collection Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expressway%20Speed%20Prediction%20Based%20on%20Electronic%20Toll%20Collection%20Data&rft.jtitle=Electronics%20(Basel)&rft.au=Zou,%20Fumin&rft.date=2022-05-18&rft.volume=11&rft.issue=10&rft.spage=1613&rft.pages=1613-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11101613&rft_dat=%3Cproquest_cross%3E2670135374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670135374&rft_id=info:pmid/&rfr_iscdi=true |