A Tighter Relaxation for the Relative Pose Problem Between Cameras

This paper tackles the resolution of the Relative Pose problem with optimality guarantees by stating it as an optimization problem over the set of essential matrices that minimizes the squared epipolar error. We relax this non-convex problem with its Shor’s relaxation, a convex program that can be s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2022-06, Vol.64 (5), p.493-505
Hauptverfasser: Garcia-Salguero, Mercedes, Briales, Jesus, Gonzalez-Jimenez, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 5
container_start_page 493
container_title Journal of mathematical imaging and vision
container_volume 64
creator Garcia-Salguero, Mercedes
Briales, Jesus
Gonzalez-Jimenez, Javier
description This paper tackles the resolution of the Relative Pose problem with optimality guarantees by stating it as an optimization problem over the set of essential matrices that minimizes the squared epipolar error. We relax this non-convex problem with its Shor’s relaxation, a convex program that can be solved by off-the-shelf tools. We follow the empirical observation that redundant but independent constraints tighten the relaxation. For that, we leverage equivalent definitions of the set of essential matrices based on the translation vectors between the cameras. Overconstrained characterizations of the set of essential matrices are derived by the combination of these definitions. Through extensive experiments on synthetic and real data, our proposal is empirically proved to remain tight and to require only 7 milliseconds to be solved even for the overconstrained formulations, finding the optimal solution under a wide variety of configurations, including highly noisy data and outliers. The solver cannot certify the solution only in very extreme cases, e.g .noise 100 pix and number of pair-wise correspondences under 15. The proposal is thus faster than other overconstrained formulations while being faster than the minimal ones, making it suitable for real-world applications that require optimality certification.
doi_str_mv 10.1007/s10851-022-01085-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670111485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670111485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-eee21bf432a65833f0f46131fd879240afa1ec483fe8f4630c629c01eca424a03</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrE2bB-JHaObcVLqgRC5Wy5Yd2mSuNipzz69bgNEjcuu6vZmdnVEHLJ4JoBqJvIQOeMAucU9iPdHZEBy5WgqtDimAyg5JKWJahTchbjCgA0Z2pAxqNsVi-WHYbsBRv7Zbvat5nzIeuWeIC6-gOzZx9TCX7e4DobY_eJ2GYTu8Zg4zk5cbaJePHbh-T17nY2eaDTp_vHyWhKK16KjiIiZ3MnBbdFroVw4GTBBHNvWqXnwDrLsJJaONRpI6AqeFlBwqzk0oIYkqvedxP8-xZjZ1Z-G9p00vBCAWNM6jyxeM-qgo8xoDObUK9t-DYMzD4r02dlUlbmkJXZJZHoRTGR2wWGP-t_VD9OB2uT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670111485</pqid></control><display><type>article</type><title>A Tighter Relaxation for the Relative Pose Problem Between Cameras</title><source>Springer Nature - Complete Springer Journals</source><creator>Garcia-Salguero, Mercedes ; Briales, Jesus ; Gonzalez-Jimenez, Javier</creator><creatorcontrib>Garcia-Salguero, Mercedes ; Briales, Jesus ; Gonzalez-Jimenez, Javier</creatorcontrib><description>This paper tackles the resolution of the Relative Pose problem with optimality guarantees by stating it as an optimization problem over the set of essential matrices that minimizes the squared epipolar error. We relax this non-convex problem with its Shor’s relaxation, a convex program that can be solved by off-the-shelf tools. We follow the empirical observation that redundant but independent constraints tighten the relaxation. For that, we leverage equivalent definitions of the set of essential matrices based on the translation vectors between the cameras. Overconstrained characterizations of the set of essential matrices are derived by the combination of these definitions. Through extensive experiments on synthetic and real data, our proposal is empirically proved to remain tight and to require only 7 milliseconds to be solved even for the overconstrained formulations, finding the optimal solution under a wide variety of configurations, including highly noisy data and outliers. The solver cannot certify the solution only in very extreme cases, e.g .noise 100 pix and number of pair-wise correspondences under 15. The proposal is thus faster than other overconstrained formulations while being faster than the minimal ones, making it suitable for real-world applications that require optimality certification.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-022-01085-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Cameras ; Computer Science ; Image Processing and Computer Vision ; Mathematical analysis ; Mathematical Methods in Physics ; Optimization ; Outliers (statistics) ; Signal,Image and Speech Processing</subject><ispartof>Journal of mathematical imaging and vision, 2022-06, Vol.64 (5), p.493-505</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-eee21bf432a65833f0f46131fd879240afa1ec483fe8f4630c629c01eca424a03</citedby><cites>FETCH-LOGICAL-c293t-eee21bf432a65833f0f46131fd879240afa1ec483fe8f4630c629c01eca424a03</cites><orcidid>0000-0002-4786-4936 ; 0000-0002-3382-5872 ; 0000-0003-3845-3497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-022-01085-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-022-01085-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Garcia-Salguero, Mercedes</creatorcontrib><creatorcontrib>Briales, Jesus</creatorcontrib><creatorcontrib>Gonzalez-Jimenez, Javier</creatorcontrib><title>A Tighter Relaxation for the Relative Pose Problem Between Cameras</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>This paper tackles the resolution of the Relative Pose problem with optimality guarantees by stating it as an optimization problem over the set of essential matrices that minimizes the squared epipolar error. We relax this non-convex problem with its Shor’s relaxation, a convex program that can be solved by off-the-shelf tools. We follow the empirical observation that redundant but independent constraints tighten the relaxation. For that, we leverage equivalent definitions of the set of essential matrices based on the translation vectors between the cameras. Overconstrained characterizations of the set of essential matrices are derived by the combination of these definitions. Through extensive experiments on synthetic and real data, our proposal is empirically proved to remain tight and to require only 7 milliseconds to be solved even for the overconstrained formulations, finding the optimal solution under a wide variety of configurations, including highly noisy data and outliers. The solver cannot certify the solution only in very extreme cases, e.g .noise 100 pix and number of pair-wise correspondences under 15. The proposal is thus faster than other overconstrained formulations while being faster than the minimal ones, making it suitable for real-world applications that require optimality certification.</description><subject>Applications of Mathematics</subject><subject>Cameras</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Signal,Image and Speech Processing</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcIrE2bB-JHaObcVLqgRC5Wy5Yd2mSuNipzz69bgNEjcuu6vZmdnVEHLJ4JoBqJvIQOeMAucU9iPdHZEBy5WgqtDimAyg5JKWJahTchbjCgA0Z2pAxqNsVi-WHYbsBRv7Zbvat5nzIeuWeIC6-gOzZx9TCX7e4DobY_eJ2GYTu8Zg4zk5cbaJePHbh-T17nY2eaDTp_vHyWhKK16KjiIiZ3MnBbdFroVw4GTBBHNvWqXnwDrLsJJaONRpI6AqeFlBwqzk0oIYkqvedxP8-xZjZ1Z-G9p00vBCAWNM6jyxeM-qgo8xoDObUK9t-DYMzD4r02dlUlbmkJXZJZHoRTGR2wWGP-t_VD9OB2uT</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Garcia-Salguero, Mercedes</creator><creator>Briales, Jesus</creator><creator>Gonzalez-Jimenez, Javier</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4786-4936</orcidid><orcidid>https://orcid.org/0000-0002-3382-5872</orcidid><orcidid>https://orcid.org/0000-0003-3845-3497</orcidid></search><sort><creationdate>20220601</creationdate><title>A Tighter Relaxation for the Relative Pose Problem Between Cameras</title><author>Garcia-Salguero, Mercedes ; Briales, Jesus ; Gonzalez-Jimenez, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-eee21bf432a65833f0f46131fd879240afa1ec483fe8f4630c629c01eca424a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Cameras</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Salguero, Mercedes</creatorcontrib><creatorcontrib>Briales, Jesus</creatorcontrib><creatorcontrib>Gonzalez-Jimenez, Javier</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Salguero, Mercedes</au><au>Briales, Jesus</au><au>Gonzalez-Jimenez, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tighter Relaxation for the Relative Pose Problem Between Cameras</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>64</volume><issue>5</issue><spage>493</spage><epage>505</epage><pages>493-505</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>This paper tackles the resolution of the Relative Pose problem with optimality guarantees by stating it as an optimization problem over the set of essential matrices that minimizes the squared epipolar error. We relax this non-convex problem with its Shor’s relaxation, a convex program that can be solved by off-the-shelf tools. We follow the empirical observation that redundant but independent constraints tighten the relaxation. For that, we leverage equivalent definitions of the set of essential matrices based on the translation vectors between the cameras. Overconstrained characterizations of the set of essential matrices are derived by the combination of these definitions. Through extensive experiments on synthetic and real data, our proposal is empirically proved to remain tight and to require only 7 milliseconds to be solved even for the overconstrained formulations, finding the optimal solution under a wide variety of configurations, including highly noisy data and outliers. The solver cannot certify the solution only in very extreme cases, e.g .noise 100 pix and number of pair-wise correspondences under 15. The proposal is thus faster than other overconstrained formulations while being faster than the minimal ones, making it suitable for real-world applications that require optimality certification.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-022-01085-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4786-4936</orcidid><orcidid>https://orcid.org/0000-0002-3382-5872</orcidid><orcidid>https://orcid.org/0000-0003-3845-3497</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2022-06, Vol.64 (5), p.493-505
issn 0924-9907
1573-7683
language eng
recordid cdi_proquest_journals_2670111485
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Cameras
Computer Science
Image Processing and Computer Vision
Mathematical analysis
Mathematical Methods in Physics
Optimization
Outliers (statistics)
Signal,Image and Speech Processing
title A Tighter Relaxation for the Relative Pose Problem Between Cameras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tighter%20Relaxation%20for%20the%20Relative%20Pose%20Problem%20Between%20Cameras&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Garcia-Salguero,%20Mercedes&rft.date=2022-06-01&rft.volume=64&rft.issue=5&rft.spage=493&rft.epage=505&rft.pages=493-505&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-022-01085-z&rft_dat=%3Cproquest_cross%3E2670111485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670111485&rft_id=info:pmid/&rfr_iscdi=true