Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination

Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems 2022-07, Vol.25 (2), p.365-396
1. Verfasser: Lu, Kevin W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 2
container_start_page 365
container_title Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems
container_volume 25
creator Lu, Kevin W.
description Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the process where the stationary distribution or background driving Lévy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving Lévy process, leading to an innovation term which is a discrete and continuous mixture, allowing for the exact simulation of the process, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that maximum likelihood numerically computed using Fourier inversion can be applied to accurately estimate the parameters in both cases.
doi_str_mv 10.1007/s11203-021-09254-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670111430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670111430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-da48a6db4d58c0f255077fb9f59d1f2120d5620dfb6b870467e18ca35e4cb2a73</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWBv8GydLVPEnVWJD15bj2NRt6hQ7adUjcQ4uhmmQ2LGZGVnvvfF8AFwTfEswlneJEIoZwpQgXFHBET8BEyIkRRUj5DTPrJQIl5Kfg4uUVhjjQhA6AWGmW19H3fsuQNdFuBna3u909Lq3cP71uTugJvqdDfA1htRbH9Bi2dpQW7OG29gZm5JNcO_7JdTbbevNMSvBvoN7q9cwDXUXGx-Oz5fgzOk22avfPgWLx4e32TOavz69zO7nyDBBe9RoXuqiqXkjSoMdFQJL6erKiaohjuZbG1Hk4uqiLiXmhbSkNJoJy01NtWRTcDPm5h9-DDb1atUNMeSVihYSE0I4w1lFR5WJXUrROrWNfqPjQRGsfriqkavKXNWRq-LZxEZTyuLwbuNf9D-ubwlWfhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670111430</pqid></control><display><type>article</type><title>Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination</title><source>Springer Nature - Complete Springer Journals</source><creator>Lu, Kevin W.</creator><creatorcontrib>Lu, Kevin W.</creatorcontrib><description>Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the process where the stationary distribution or background driving Lévy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving Lévy process, leading to an innovation term which is a discrete and continuous mixture, allowing for the exact simulation of the process, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that maximum likelihood numerically computed using Fourier inversion can be applied to accurately estimate the parameters in both cases.</description><identifier>ISSN: 1387-0874</identifier><identifier>EISSN: 1572-9311</identifier><identifier>DOI: 10.1007/s11203-021-09254-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Innovations ; Mathematics ; Mathematics and Statistics ; Multivariate analysis ; Ornstein-Uhlenbeck process ; Probability Theory and Stochastic Processes ; Statistical Theory and Methods ; Stochastic processes</subject><ispartof>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems, 2022-07, Vol.25 (2), p.365-396</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-da48a6db4d58c0f255077fb9f59d1f2120d5620dfb6b870467e18ca35e4cb2a73</citedby><cites>FETCH-LOGICAL-c352t-da48a6db4d58c0f255077fb9f59d1f2120d5620dfb6b870467e18ca35e4cb2a73</cites><orcidid>0000-0002-8694-8446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11203-021-09254-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11203-021-09254-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, Kevin W.</creatorcontrib><title>Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination</title><title>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems</title><addtitle>Stat Inference Stoch Process</addtitle><description>Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the process where the stationary distribution or background driving Lévy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving Lévy process, leading to an innovation term which is a discrete and continuous mixture, allowing for the exact simulation of the process, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that maximum likelihood numerically computed using Fourier inversion can be applied to accurately estimate the parameters in both cases.</description><subject>Innovations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multivariate analysis</subject><subject>Ornstein-Uhlenbeck process</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical Theory and Methods</subject><subject>Stochastic processes</subject><issn>1387-0874</issn><issn>1572-9311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWBv8GydLVPEnVWJD15bj2NRt6hQ7adUjcQ4uhmmQ2LGZGVnvvfF8AFwTfEswlneJEIoZwpQgXFHBET8BEyIkRRUj5DTPrJQIl5Kfg4uUVhjjQhA6AWGmW19H3fsuQNdFuBna3u909Lq3cP71uTugJvqdDfA1htRbH9Bi2dpQW7OG29gZm5JNcO_7JdTbbevNMSvBvoN7q9cwDXUXGx-Oz5fgzOk22avfPgWLx4e32TOavz69zO7nyDBBe9RoXuqiqXkjSoMdFQJL6erKiaohjuZbG1Hk4uqiLiXmhbSkNJoJy01NtWRTcDPm5h9-DDb1atUNMeSVihYSE0I4w1lFR5WJXUrROrWNfqPjQRGsfriqkavKXNWRq-LZxEZTyuLwbuNf9D-ubwlWfhw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Lu, Kevin W.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8694-8446</orcidid></search><sort><creationdate>20220701</creationdate><title>Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination</title><author>Lu, Kevin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-da48a6db4d58c0f255077fb9f59d1f2120d5620dfb6b870467e18ca35e4cb2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Innovations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multivariate analysis</topic><topic>Ornstein-Uhlenbeck process</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical Theory and Methods</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Kevin W.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Kevin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination</atitle><jtitle>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems</jtitle><stitle>Stat Inference Stoch Process</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>25</volume><issue>2</issue><spage>365</spage><epage>396</epage><pages>365-396</pages><issn>1387-0874</issn><eissn>1572-9311</eissn><abstract>Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the process where the stationary distribution or background driving Lévy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving Lévy process, leading to an innovation term which is a discrete and continuous mixture, allowing for the exact simulation of the process, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that maximum likelihood numerically computed using Fourier inversion can be applied to accurately estimate the parameters in both cases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11203-021-09254-4</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8694-8446</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-0874
ispartof Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems, 2022-07, Vol.25 (2), p.365-396
issn 1387-0874
1572-9311
language eng
recordid cdi_proquest_journals_2670111430
source Springer Nature - Complete Springer Journals
subjects Innovations
Mathematics
Mathematics and Statistics
Multivariate analysis
Ornstein-Uhlenbeck process
Probability Theory and Stochastic Processes
Statistical Theory and Methods
Stochastic processes
title Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20for%20multivariate%20L%C3%A9vy-driven%20Ornstein-Uhlenbeck%20processes%20with%20applications%20to%20weak%20subordination&rft.jtitle=Statistical%20inference%20for%20stochastic%20processes%20:%20an%20international%20journal%20devoted%20to%20time%20series%20analysis%20and%20the%20statistics%20of%20continuous%20time%20processes%20and%20dynamic%20systems&rft.au=Lu,%20Kevin%20W.&rft.date=2022-07-01&rft.volume=25&rft.issue=2&rft.spage=365&rft.epage=396&rft.pages=365-396&rft.issn=1387-0874&rft.eissn=1572-9311&rft_id=info:doi/10.1007/s11203-021-09254-4&rft_dat=%3Cproquest_cross%3E2670111430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670111430&rft_id=info:pmid/&rfr_iscdi=true