Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination
Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the proce...
Gespeichert in:
Veröffentlicht in: | Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems 2022-07, Vol.25 (2), p.365-396 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 396 |
---|---|
container_issue | 2 |
container_start_page | 365 |
container_title | Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems |
container_volume | 25 |
creator | Lu, Kevin W. |
description | Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the process where the stationary distribution or background driving Lévy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving Lévy process, leading to an innovation term which is a discrete and continuous mixture, allowing for the exact simulation of the process, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that maximum likelihood numerically computed using Fourier inversion can be applied to accurately estimate the parameters in both cases. |
doi_str_mv | 10.1007/s11203-021-09254-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670111430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670111430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-da48a6db4d58c0f255077fb9f59d1f2120d5620dfb6b870467e18ca35e4cb2a73</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWBv8GydLVPEnVWJD15bj2NRt6hQ7adUjcQ4uhmmQ2LGZGVnvvfF8AFwTfEswlneJEIoZwpQgXFHBET8BEyIkRRUj5DTPrJQIl5Kfg4uUVhjjQhA6AWGmW19H3fsuQNdFuBna3u909Lq3cP71uTugJvqdDfA1htRbH9Bi2dpQW7OG29gZm5JNcO_7JdTbbevNMSvBvoN7q9cwDXUXGx-Oz5fgzOk22avfPgWLx4e32TOavz69zO7nyDBBe9RoXuqiqXkjSoMdFQJL6erKiaohjuZbG1Hk4uqiLiXmhbSkNJoJy01NtWRTcDPm5h9-DDb1atUNMeSVihYSE0I4w1lFR5WJXUrROrWNfqPjQRGsfriqkavKXNWRq-LZxEZTyuLwbuNf9D-ubwlWfhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670111430</pqid></control><display><type>article</type><title>Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination</title><source>Springer Nature - Complete Springer Journals</source><creator>Lu, Kevin W.</creator><creatorcontrib>Lu, Kevin W.</creatorcontrib><description>Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the process where the stationary distribution or background driving Lévy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving Lévy process, leading to an innovation term which is a discrete and continuous mixture, allowing for the exact simulation of the process, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that maximum likelihood numerically computed using Fourier inversion can be applied to accurately estimate the parameters in both cases.</description><identifier>ISSN: 1387-0874</identifier><identifier>EISSN: 1572-9311</identifier><identifier>DOI: 10.1007/s11203-021-09254-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Innovations ; Mathematics ; Mathematics and Statistics ; Multivariate analysis ; Ornstein-Uhlenbeck process ; Probability Theory and Stochastic Processes ; Statistical Theory and Methods ; Stochastic processes</subject><ispartof>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems, 2022-07, Vol.25 (2), p.365-396</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-da48a6db4d58c0f255077fb9f59d1f2120d5620dfb6b870467e18ca35e4cb2a73</citedby><cites>FETCH-LOGICAL-c352t-da48a6db4d58c0f255077fb9f59d1f2120d5620dfb6b870467e18ca35e4cb2a73</cites><orcidid>0000-0002-8694-8446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11203-021-09254-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11203-021-09254-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, Kevin W.</creatorcontrib><title>Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination</title><title>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems</title><addtitle>Stat Inference Stoch Process</addtitle><description>Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the process where the stationary distribution or background driving Lévy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving Lévy process, leading to an innovation term which is a discrete and continuous mixture, allowing for the exact simulation of the process, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that maximum likelihood numerically computed using Fourier inversion can be applied to accurately estimate the parameters in both cases.</description><subject>Innovations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multivariate analysis</subject><subject>Ornstein-Uhlenbeck process</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical Theory and Methods</subject><subject>Stochastic processes</subject><issn>1387-0874</issn><issn>1572-9311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWBv8GydLVPEnVWJD15bj2NRt6hQ7adUjcQ4uhmmQ2LGZGVnvvfF8AFwTfEswlneJEIoZwpQgXFHBET8BEyIkRRUj5DTPrJQIl5Kfg4uUVhjjQhA6AWGmW19H3fsuQNdFuBna3u909Lq3cP71uTugJvqdDfA1htRbH9Bi2dpQW7OG29gZm5JNcO_7JdTbbevNMSvBvoN7q9cwDXUXGx-Oz5fgzOk22avfPgWLx4e32TOavz69zO7nyDBBe9RoXuqiqXkjSoMdFQJL6erKiaohjuZbG1Hk4uqiLiXmhbSkNJoJy01NtWRTcDPm5h9-DDb1atUNMeSVihYSE0I4w1lFR5WJXUrROrWNfqPjQRGsfriqkavKXNWRq-LZxEZTyuLwbuNf9D-ubwlWfhw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Lu, Kevin W.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8694-8446</orcidid></search><sort><creationdate>20220701</creationdate><title>Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination</title><author>Lu, Kevin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-da48a6db4d58c0f255077fb9f59d1f2120d5620dfb6b870467e18ca35e4cb2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Innovations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multivariate analysis</topic><topic>Ornstein-Uhlenbeck process</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical Theory and Methods</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Kevin W.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Kevin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination</atitle><jtitle>Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems</jtitle><stitle>Stat Inference Stoch Process</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>25</volume><issue>2</issue><spage>365</spage><epage>396</epage><pages>365-396</pages><issn>1387-0874</issn><eissn>1572-9311</eissn><abstract>Consider a multivariate Lévy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving Lévy process is from a parametric family. We derive the likelihood function assuming that the innovation term is absolutely continuous. Two examples are studied in detail: the process where the stationary distribution or background driving Lévy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving Lévy process, leading to an innovation term which is a discrete and continuous mixture, allowing for the exact simulation of the process, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that maximum likelihood numerically computed using Fourier inversion can be applied to accurately estimate the parameters in both cases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11203-021-09254-4</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8694-8446</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-0874 |
ispartof | Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems, 2022-07, Vol.25 (2), p.365-396 |
issn | 1387-0874 1572-9311 |
language | eng |
recordid | cdi_proquest_journals_2670111430 |
source | Springer Nature - Complete Springer Journals |
subjects | Innovations Mathematics Mathematics and Statistics Multivariate analysis Ornstein-Uhlenbeck process Probability Theory and Stochastic Processes Statistical Theory and Methods Stochastic processes |
title | Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20for%20multivariate%20L%C3%A9vy-driven%20Ornstein-Uhlenbeck%20processes%20with%20applications%20to%20weak%20subordination&rft.jtitle=Statistical%20inference%20for%20stochastic%20processes%20:%20an%20international%20journal%20devoted%20to%20time%20series%20analysis%20and%20the%20statistics%20of%20continuous%20time%20processes%20and%20dynamic%20systems&rft.au=Lu,%20Kevin%20W.&rft.date=2022-07-01&rft.volume=25&rft.issue=2&rft.spage=365&rft.epage=396&rft.pages=365-396&rft.issn=1387-0874&rft.eissn=1572-9311&rft_id=info:doi/10.1007/s11203-021-09254-4&rft_dat=%3Cproquest_cross%3E2670111430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670111430&rft_id=info:pmid/&rfr_iscdi=true |