Model estimation and prediction of sunspots cycles through AR-GARCH models

Study of sunspots cycles is a significant tool to understand space weather and its influence on the earth’s climate. This communication aims to study the sunspots individual cycles ranging from cycle 1st–23rd (1755–2008). Cycle 24th is still in continuation, so it is not included. The oscillatory be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of physics 2022, Vol.96 (7), p.1895-1903
Hauptverfasser: Zaffar, Asma, Abbas, Shaheen, Ansari, Muhammad Rashid Kamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1903
container_issue 7
container_start_page 1895
container_title Indian journal of physics
container_volume 96
creator Zaffar, Asma
Abbas, Shaheen
Ansari, Muhammad Rashid Kamal
description Study of sunspots cycles is a significant tool to understand space weather and its influence on the earth’s climate. This communication aims to study the sunspots individual cycles ranging from cycle 1st–23rd (1755–2008). Cycle 24th is still in continuation, so it is not included. The oscillatory behavior of sunspots in consecutive cycles in all these 23rd cycles is separately investigated. The study of sunspots cycles is focused on the relevance of numerous generalized autoregressive conditional heteroskedasticity (GARCH) models fitted to analyze and study their performance for delivering volatility forecasts for sunspot cycles. The GARCH (1, 1) model is used for detecting the aptness of autoregressive conditional heteroscedastic (ARCH) effect on sunspot cycles data, and Lagrange multiplier test is also applied. Most of the sunspot cycles follow auto-regressive (AR (2))-GARCH except cycles 7th, 15th, and 17th which follow AR (3)-GARCH model. AR (2)-GARCH model is the finest model which forecasts better as compared to other models. However, AR (2)-GARCH model is the adequate model for estimation and forecasting most of the sunspot cycles.
doi_str_mv 10.1007/s12648-021-02135-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670111105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670111105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d157caf20e70ba8e9aff4c910f5b9500ecfc271c0337566c871c6ba8c1d17ae83</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHP0ZnNZrM5lqKtUhGKnsM2m_SDdrMmu4f-e9Ou4M2BYWbgvTczj5B7hEcEkE8RsyIvGWR4Si6YuiAjUDJnqszF5bnnDHNRXpObGHcAhUIpRuTt3dd2T23stoeq2_qGVk1N22DrrTmP3tHYN7H1XaTmaPY20m4TfL_e0MmSzSbL6ZweThrxlly5ah_t3W8dk6-X58_pnC0-Zq_TyYIZjqpjNQppKpeBlbCqSqsq53KjEJxYKQFgjTOZRAOcS1EUpkx9kYAGa5SVLfmYPAy6bfDffbpc73wfmrRSZ4UETAEiobIBZYKPMVin25BeDEeNoE-e6cEznfzSZ8-0SiQ-kGICN2sb_qT_Yf0A9Bhuuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670111105</pqid></control><display><type>article</type><title>Model estimation and prediction of sunspots cycles through AR-GARCH models</title><source>Springer Nature - Complete Springer Journals</source><creator>Zaffar, Asma ; Abbas, Shaheen ; Ansari, Muhammad Rashid Kamal</creator><creatorcontrib>Zaffar, Asma ; Abbas, Shaheen ; Ansari, Muhammad Rashid Kamal</creatorcontrib><description>Study of sunspots cycles is a significant tool to understand space weather and its influence on the earth’s climate. This communication aims to study the sunspots individual cycles ranging from cycle 1st–23rd (1755–2008). Cycle 24th is still in continuation, so it is not included. The oscillatory behavior of sunspots in consecutive cycles in all these 23rd cycles is separately investigated. The study of sunspots cycles is focused on the relevance of numerous generalized autoregressive conditional heteroskedasticity (GARCH) models fitted to analyze and study their performance for delivering volatility forecasts for sunspot cycles. The GARCH (1, 1) model is used for detecting the aptness of autoregressive conditional heteroscedastic (ARCH) effect on sunspot cycles data, and Lagrange multiplier test is also applied. Most of the sunspot cycles follow auto-regressive (AR (2))-GARCH except cycles 7th, 15th, and 17th which follow AR (3)-GARCH model. AR (2)-GARCH model is the finest model which forecasts better as compared to other models. However, AR (2)-GARCH model is the adequate model for estimation and forecasting most of the sunspot cycles.</description><identifier>ISSN: 0973-1458</identifier><identifier>EISSN: 0974-9845</identifier><identifier>DOI: 10.1007/s12648-021-02135-9</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astrophysics and Astroparticles ; Autoregressive models ; Kurtosis ; Lagrange multiplier ; Original Paper ; Physics ; Physics and Astronomy ; Skewness ; Stochastic models ; Sunspot cycle ; Sunspots</subject><ispartof>Indian journal of physics, 2022, Vol.96 (7), p.1895-1903</ispartof><rights>Indian Association for the Cultivation of Science 2021</rights><rights>Indian Association for the Cultivation of Science 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d157caf20e70ba8e9aff4c910f5b9500ecfc271c0337566c871c6ba8c1d17ae83</citedby><cites>FETCH-LOGICAL-c319t-d157caf20e70ba8e9aff4c910f5b9500ecfc271c0337566c871c6ba8c1d17ae83</cites><orcidid>0000-0002-2307-6572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12648-021-02135-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12648-021-02135-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zaffar, Asma</creatorcontrib><creatorcontrib>Abbas, Shaheen</creatorcontrib><creatorcontrib>Ansari, Muhammad Rashid Kamal</creatorcontrib><title>Model estimation and prediction of sunspots cycles through AR-GARCH models</title><title>Indian journal of physics</title><addtitle>Indian J Phys</addtitle><description>Study of sunspots cycles is a significant tool to understand space weather and its influence on the earth’s climate. This communication aims to study the sunspots individual cycles ranging from cycle 1st–23rd (1755–2008). Cycle 24th is still in continuation, so it is not included. The oscillatory behavior of sunspots in consecutive cycles in all these 23rd cycles is separately investigated. The study of sunspots cycles is focused on the relevance of numerous generalized autoregressive conditional heteroskedasticity (GARCH) models fitted to analyze and study their performance for delivering volatility forecasts for sunspot cycles. The GARCH (1, 1) model is used for detecting the aptness of autoregressive conditional heteroscedastic (ARCH) effect on sunspot cycles data, and Lagrange multiplier test is also applied. Most of the sunspot cycles follow auto-regressive (AR (2))-GARCH except cycles 7th, 15th, and 17th which follow AR (3)-GARCH model. AR (2)-GARCH model is the finest model which forecasts better as compared to other models. However, AR (2)-GARCH model is the adequate model for estimation and forecasting most of the sunspot cycles.</description><subject>Astrophysics and Astroparticles</subject><subject>Autoregressive models</subject><subject>Kurtosis</subject><subject>Lagrange multiplier</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Skewness</subject><subject>Stochastic models</subject><subject>Sunspot cycle</subject><subject>Sunspots</subject><issn>0973-1458</issn><issn>0974-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwHP0ZnNZrM5lqKtUhGKnsM2m_SDdrMmu4f-e9Ou4M2BYWbgvTczj5B7hEcEkE8RsyIvGWR4Si6YuiAjUDJnqszF5bnnDHNRXpObGHcAhUIpRuTt3dd2T23stoeq2_qGVk1N22DrrTmP3tHYN7H1XaTmaPY20m4TfL_e0MmSzSbL6ZweThrxlly5ah_t3W8dk6-X58_pnC0-Zq_TyYIZjqpjNQppKpeBlbCqSqsq53KjEJxYKQFgjTOZRAOcS1EUpkx9kYAGa5SVLfmYPAy6bfDffbpc73wfmrRSZ4UETAEiobIBZYKPMVin25BeDEeNoE-e6cEznfzSZ8-0SiQ-kGICN2sb_qT_Yf0A9Bhuuw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zaffar, Asma</creator><creator>Abbas, Shaheen</creator><creator>Ansari, Muhammad Rashid Kamal</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2307-6572</orcidid></search><sort><creationdate>2022</creationdate><title>Model estimation and prediction of sunspots cycles through AR-GARCH models</title><author>Zaffar, Asma ; Abbas, Shaheen ; Ansari, Muhammad Rashid Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d157caf20e70ba8e9aff4c910f5b9500ecfc271c0337566c871c6ba8c1d17ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Autoregressive models</topic><topic>Kurtosis</topic><topic>Lagrange multiplier</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Skewness</topic><topic>Stochastic models</topic><topic>Sunspot cycle</topic><topic>Sunspots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaffar, Asma</creatorcontrib><creatorcontrib>Abbas, Shaheen</creatorcontrib><creatorcontrib>Ansari, Muhammad Rashid Kamal</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Indian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaffar, Asma</au><au>Abbas, Shaheen</au><au>Ansari, Muhammad Rashid Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model estimation and prediction of sunspots cycles through AR-GARCH models</atitle><jtitle>Indian journal of physics</jtitle><stitle>Indian J Phys</stitle><date>2022</date><risdate>2022</risdate><volume>96</volume><issue>7</issue><spage>1895</spage><epage>1903</epage><pages>1895-1903</pages><issn>0973-1458</issn><eissn>0974-9845</eissn><abstract>Study of sunspots cycles is a significant tool to understand space weather and its influence on the earth’s climate. This communication aims to study the sunspots individual cycles ranging from cycle 1st–23rd (1755–2008). Cycle 24th is still in continuation, so it is not included. The oscillatory behavior of sunspots in consecutive cycles in all these 23rd cycles is separately investigated. The study of sunspots cycles is focused on the relevance of numerous generalized autoregressive conditional heteroskedasticity (GARCH) models fitted to analyze and study their performance for delivering volatility forecasts for sunspot cycles. The GARCH (1, 1) model is used for detecting the aptness of autoregressive conditional heteroscedastic (ARCH) effect on sunspot cycles data, and Lagrange multiplier test is also applied. Most of the sunspot cycles follow auto-regressive (AR (2))-GARCH except cycles 7th, 15th, and 17th which follow AR (3)-GARCH model. AR (2)-GARCH model is the finest model which forecasts better as compared to other models. However, AR (2)-GARCH model is the adequate model for estimation and forecasting most of the sunspot cycles.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12648-021-02135-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2307-6572</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0973-1458
ispartof Indian journal of physics, 2022, Vol.96 (7), p.1895-1903
issn 0973-1458
0974-9845
language eng
recordid cdi_proquest_journals_2670111105
source Springer Nature - Complete Springer Journals
subjects Astrophysics and Astroparticles
Autoregressive models
Kurtosis
Lagrange multiplier
Original Paper
Physics
Physics and Astronomy
Skewness
Stochastic models
Sunspot cycle
Sunspots
title Model estimation and prediction of sunspots cycles through AR-GARCH models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20estimation%20and%20prediction%20of%20sunspots%20cycles%20through%20AR-GARCH%20models&rft.jtitle=Indian%20journal%20of%20physics&rft.au=Zaffar,%20Asma&rft.date=2022&rft.volume=96&rft.issue=7&rft.spage=1895&rft.epage=1903&rft.pages=1895-1903&rft.issn=0973-1458&rft.eissn=0974-9845&rft_id=info:doi/10.1007/s12648-021-02135-9&rft_dat=%3Cproquest_cross%3E2670111105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670111105&rft_id=info:pmid/&rfr_iscdi=true