Model estimation and prediction of sunspots cycles through AR-GARCH models
Study of sunspots cycles is a significant tool to understand space weather and its influence on the earth’s climate. This communication aims to study the sunspots individual cycles ranging from cycle 1st–23rd (1755–2008). Cycle 24th is still in continuation, so it is not included. The oscillatory be...
Gespeichert in:
Veröffentlicht in: | Indian journal of physics 2022, Vol.96 (7), p.1895-1903 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1903 |
---|---|
container_issue | 7 |
container_start_page | 1895 |
container_title | Indian journal of physics |
container_volume | 96 |
creator | Zaffar, Asma Abbas, Shaheen Ansari, Muhammad Rashid Kamal |
description | Study of sunspots cycles is a significant tool to understand space weather and its influence on the earth’s climate. This communication aims to study the sunspots individual cycles ranging from cycle 1st–23rd (1755–2008). Cycle 24th is still in continuation, so it is not included. The oscillatory behavior of sunspots in consecutive cycles in all these 23rd cycles is separately investigated. The study of sunspots cycles is focused on the relevance of numerous generalized autoregressive conditional heteroskedasticity (GARCH) models fitted to analyze and study their performance for delivering volatility forecasts for sunspot cycles. The GARCH (1, 1) model is used for detecting the aptness of autoregressive conditional heteroscedastic (ARCH) effect on sunspot cycles data, and Lagrange multiplier test is also applied. Most of the sunspot cycles follow auto-regressive (AR (2))-GARCH except cycles 7th, 15th, and 17th which follow AR (3)-GARCH model. AR (2)-GARCH model is the finest model which forecasts better as compared to other models. However, AR (2)-GARCH model is the adequate model for estimation and forecasting most of the sunspot cycles. |
doi_str_mv | 10.1007/s12648-021-02135-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670111105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670111105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d157caf20e70ba8e9aff4c910f5b9500ecfc271c0337566c871c6ba8c1d17ae83</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHP0ZnNZrM5lqKtUhGKnsM2m_SDdrMmu4f-e9Ou4M2BYWbgvTczj5B7hEcEkE8RsyIvGWR4Si6YuiAjUDJnqszF5bnnDHNRXpObGHcAhUIpRuTt3dd2T23stoeq2_qGVk1N22DrrTmP3tHYN7H1XaTmaPY20m4TfL_e0MmSzSbL6ZweThrxlly5ah_t3W8dk6-X58_pnC0-Zq_TyYIZjqpjNQppKpeBlbCqSqsq53KjEJxYKQFgjTOZRAOcS1EUpkx9kYAGa5SVLfmYPAy6bfDffbpc73wfmrRSZ4UETAEiobIBZYKPMVin25BeDEeNoE-e6cEznfzSZ8-0SiQ-kGICN2sb_qT_Yf0A9Bhuuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670111105</pqid></control><display><type>article</type><title>Model estimation and prediction of sunspots cycles through AR-GARCH models</title><source>Springer Nature - Complete Springer Journals</source><creator>Zaffar, Asma ; Abbas, Shaheen ; Ansari, Muhammad Rashid Kamal</creator><creatorcontrib>Zaffar, Asma ; Abbas, Shaheen ; Ansari, Muhammad Rashid Kamal</creatorcontrib><description>Study of sunspots cycles is a significant tool to understand space weather and its influence on the earth’s climate. This communication aims to study the sunspots individual cycles ranging from cycle 1st–23rd (1755–2008). Cycle 24th is still in continuation, so it is not included. The oscillatory behavior of sunspots in consecutive cycles in all these 23rd cycles is separately investigated. The study of sunspots cycles is focused on the relevance of numerous generalized autoregressive conditional heteroskedasticity (GARCH) models fitted to analyze and study their performance for delivering volatility forecasts for sunspot cycles. The GARCH (1, 1) model is used for detecting the aptness of autoregressive conditional heteroscedastic (ARCH) effect on sunspot cycles data, and Lagrange multiplier test is also applied. Most of the sunspot cycles follow auto-regressive (AR (2))-GARCH except cycles 7th, 15th, and 17th which follow AR (3)-GARCH model. AR (2)-GARCH model is the finest model which forecasts better as compared to other models. However, AR (2)-GARCH model is the adequate model for estimation and forecasting most of the sunspot cycles.</description><identifier>ISSN: 0973-1458</identifier><identifier>EISSN: 0974-9845</identifier><identifier>DOI: 10.1007/s12648-021-02135-9</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astrophysics and Astroparticles ; Autoregressive models ; Kurtosis ; Lagrange multiplier ; Original Paper ; Physics ; Physics and Astronomy ; Skewness ; Stochastic models ; Sunspot cycle ; Sunspots</subject><ispartof>Indian journal of physics, 2022, Vol.96 (7), p.1895-1903</ispartof><rights>Indian Association for the Cultivation of Science 2021</rights><rights>Indian Association for the Cultivation of Science 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d157caf20e70ba8e9aff4c910f5b9500ecfc271c0337566c871c6ba8c1d17ae83</citedby><cites>FETCH-LOGICAL-c319t-d157caf20e70ba8e9aff4c910f5b9500ecfc271c0337566c871c6ba8c1d17ae83</cites><orcidid>0000-0002-2307-6572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12648-021-02135-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12648-021-02135-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zaffar, Asma</creatorcontrib><creatorcontrib>Abbas, Shaheen</creatorcontrib><creatorcontrib>Ansari, Muhammad Rashid Kamal</creatorcontrib><title>Model estimation and prediction of sunspots cycles through AR-GARCH models</title><title>Indian journal of physics</title><addtitle>Indian J Phys</addtitle><description>Study of sunspots cycles is a significant tool to understand space weather and its influence on the earth’s climate. This communication aims to study the sunspots individual cycles ranging from cycle 1st–23rd (1755–2008). Cycle 24th is still in continuation, so it is not included. The oscillatory behavior of sunspots in consecutive cycles in all these 23rd cycles is separately investigated. The study of sunspots cycles is focused on the relevance of numerous generalized autoregressive conditional heteroskedasticity (GARCH) models fitted to analyze and study their performance for delivering volatility forecasts for sunspot cycles. The GARCH (1, 1) model is used for detecting the aptness of autoregressive conditional heteroscedastic (ARCH) effect on sunspot cycles data, and Lagrange multiplier test is also applied. Most of the sunspot cycles follow auto-regressive (AR (2))-GARCH except cycles 7th, 15th, and 17th which follow AR (3)-GARCH model. AR (2)-GARCH model is the finest model which forecasts better as compared to other models. However, AR (2)-GARCH model is the adequate model for estimation and forecasting most of the sunspot cycles.</description><subject>Astrophysics and Astroparticles</subject><subject>Autoregressive models</subject><subject>Kurtosis</subject><subject>Lagrange multiplier</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Skewness</subject><subject>Stochastic models</subject><subject>Sunspot cycle</subject><subject>Sunspots</subject><issn>0973-1458</issn><issn>0974-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwHP0ZnNZrM5lqKtUhGKnsM2m_SDdrMmu4f-e9Ou4M2BYWbgvTczj5B7hEcEkE8RsyIvGWR4Si6YuiAjUDJnqszF5bnnDHNRXpObGHcAhUIpRuTt3dd2T23stoeq2_qGVk1N22DrrTmP3tHYN7H1XaTmaPY20m4TfL_e0MmSzSbL6ZweThrxlly5ah_t3W8dk6-X58_pnC0-Zq_TyYIZjqpjNQppKpeBlbCqSqsq53KjEJxYKQFgjTOZRAOcS1EUpkx9kYAGa5SVLfmYPAy6bfDffbpc73wfmrRSZ4UETAEiobIBZYKPMVin25BeDEeNoE-e6cEznfzSZ8-0SiQ-kGICN2sb_qT_Yf0A9Bhuuw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zaffar, Asma</creator><creator>Abbas, Shaheen</creator><creator>Ansari, Muhammad Rashid Kamal</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2307-6572</orcidid></search><sort><creationdate>2022</creationdate><title>Model estimation and prediction of sunspots cycles through AR-GARCH models</title><author>Zaffar, Asma ; Abbas, Shaheen ; Ansari, Muhammad Rashid Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d157caf20e70ba8e9aff4c910f5b9500ecfc271c0337566c871c6ba8c1d17ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Autoregressive models</topic><topic>Kurtosis</topic><topic>Lagrange multiplier</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Skewness</topic><topic>Stochastic models</topic><topic>Sunspot cycle</topic><topic>Sunspots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaffar, Asma</creatorcontrib><creatorcontrib>Abbas, Shaheen</creatorcontrib><creatorcontrib>Ansari, Muhammad Rashid Kamal</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Indian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaffar, Asma</au><au>Abbas, Shaheen</au><au>Ansari, Muhammad Rashid Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model estimation and prediction of sunspots cycles through AR-GARCH models</atitle><jtitle>Indian journal of physics</jtitle><stitle>Indian J Phys</stitle><date>2022</date><risdate>2022</risdate><volume>96</volume><issue>7</issue><spage>1895</spage><epage>1903</epage><pages>1895-1903</pages><issn>0973-1458</issn><eissn>0974-9845</eissn><abstract>Study of sunspots cycles is a significant tool to understand space weather and its influence on the earth’s climate. This communication aims to study the sunspots individual cycles ranging from cycle 1st–23rd (1755–2008). Cycle 24th is still in continuation, so it is not included. The oscillatory behavior of sunspots in consecutive cycles in all these 23rd cycles is separately investigated. The study of sunspots cycles is focused on the relevance of numerous generalized autoregressive conditional heteroskedasticity (GARCH) models fitted to analyze and study their performance for delivering volatility forecasts for sunspot cycles. The GARCH (1, 1) model is used for detecting the aptness of autoregressive conditional heteroscedastic (ARCH) effect on sunspot cycles data, and Lagrange multiplier test is also applied. Most of the sunspot cycles follow auto-regressive (AR (2))-GARCH except cycles 7th, 15th, and 17th which follow AR (3)-GARCH model. AR (2)-GARCH model is the finest model which forecasts better as compared to other models. However, AR (2)-GARCH model is the adequate model for estimation and forecasting most of the sunspot cycles.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12648-021-02135-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2307-6572</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-1458 |
ispartof | Indian journal of physics, 2022, Vol.96 (7), p.1895-1903 |
issn | 0973-1458 0974-9845 |
language | eng |
recordid | cdi_proquest_journals_2670111105 |
source | Springer Nature - Complete Springer Journals |
subjects | Astrophysics and Astroparticles Autoregressive models Kurtosis Lagrange multiplier Original Paper Physics Physics and Astronomy Skewness Stochastic models Sunspot cycle Sunspots |
title | Model estimation and prediction of sunspots cycles through AR-GARCH models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20estimation%20and%20prediction%20of%20sunspots%20cycles%20through%20AR-GARCH%20models&rft.jtitle=Indian%20journal%20of%20physics&rft.au=Zaffar,%20Asma&rft.date=2022&rft.volume=96&rft.issue=7&rft.spage=1895&rft.epage=1903&rft.pages=1895-1903&rft.issn=0973-1458&rft.eissn=0974-9845&rft_id=info:doi/10.1007/s12648-021-02135-9&rft_dat=%3Cproquest_cross%3E2670111105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670111105&rft_id=info:pmid/&rfr_iscdi=true |