Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming

In the context of the maximum stable set problem, rank inequalities impose that the cardinality of any set of vertices contained in a stable set be, at most, as large as the stability number of the subgraph induced by such a set. Rank inequalities are very general, as they subsume many classical ine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INFORMS journal on computing 2022-03, Vol.34 (2), p.1006-1023
1. Verfasser: Coniglio, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023
container_issue 2
container_start_page 1006
container_title INFORMS journal on computing
container_volume 34
creator Coniglio, Stefano
description In the context of the maximum stable set problem, rank inequalities impose that the cardinality of any set of vertices contained in a stable set be, at most, as large as the stability number of the subgraph induced by such a set. Rank inequalities are very general, as they subsume many classical inequalities such as clique, hole, antihole, web, and antiweb inequalities. In spite of their generality, the exact separation of rank inequalities has never been addressed without the introduction of topological restrictions on the induced subgraph and the tightness of their closure has never been investigated systematically. In this work, we propose a methodology for optimizing over the closure of all rank inequalities with a right-hand side no larger than a small constant without imposing any restrictions on the topology of the induced subgraph. Our method relies on the exact separation of a relaxation of rank inequalities, which we call relaxed k -rank inequalities, whose closure is as tight. We investigate the corresponding separation problem, a bilevel programming problem asking for a subgraph of maximum weight with a bound on its stability number, whose study could be of independent interest. We first prove that the problem is Σ 2 P -hard and provide some insights on its polyhedral structure. We then propose two exact methods for its solution: a branch-and-cut algorithm (which relies on a family of faced-defining inequalities which we introduce in this paper) and a purely combinatorial branch-and-bound algorithm. Our computational results show that the closure of rank inequalities with a right-hand side no larger than a small constant can yield a bound that is stronger, in some cases, than Lovász’s Theta function, and substantially stronger than bounds obtained with standard inequalities that are valid for the stable set problem, including odd-cycle inequalities and wheel inequalities. Summary of Contribution: This paper proposes two original methods for solving a challenging cut-separation problem (of bilevel type) for a large class of inequalities valid for one of the key operations research problems, namely, the max stable set problem. An extensive set of experimental results validates the proposed methods. All the source code and data sets are available online on GitHub.
doi_str_mv 10.1287/ijoc.2021.1115
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2669603827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2669603827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-646e53cf478cf453ea495050a09855f5ad0da4eeba9e99b5922a16855de602e03</originalsourceid><addsrcrecordid>eNqFkMFu2zAMho1hA9Zlu-5MoGdnkmwp1rENurZAhw7NdjYYm06UWVYqyWm3J-hjV4YH7LgLSZA_f4Jfln3mbMlFtfpiDq5ZCib4knMu32RnXAqVSymqt6lmmue6kup99iGEA2OsLEp9lr3cH6Ox5o8ZduBO5CHuCda9C6MncB084PALbgd6HLE30VCAJxP3gLCx2PfwYHb7mN_g0MLGtASdmx2-4bOxo4VNxG1PsKEI371LpYWTQbg0PZ2on3o7j9am6x-zdx32gT79zYvs59erH-ub_O7--nZ9cZc3BWMxV6UiWTRduapSkAVhqSWTDFl6TnYSW9ZiSbRFTVpvpRYCuUqjlhQTxIpFdj77Hr17HCnE-uBGP6STtVBKK1ZUYpVUy1nVeBeCp64-emPR_645qyfa9US7nmjXE-20APMCNW4w4Z-84qoQqiwmz3yWmCFhsuF_lq9-54zK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669603827</pqid></control><display><type>article</type><title>Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming</title><source>INFORMS PubsOnLine</source><creator>Coniglio, Stefano</creator><creatorcontrib>Coniglio, Stefano</creatorcontrib><description>In the context of the maximum stable set problem, rank inequalities impose that the cardinality of any set of vertices contained in a stable set be, at most, as large as the stability number of the subgraph induced by such a set. Rank inequalities are very general, as they subsume many classical inequalities such as clique, hole, antihole, web, and antiweb inequalities. In spite of their generality, the exact separation of rank inequalities has never been addressed without the introduction of topological restrictions on the induced subgraph and the tightness of their closure has never been investigated systematically. In this work, we propose a methodology for optimizing over the closure of all rank inequalities with a right-hand side no larger than a small constant without imposing any restrictions on the topology of the induced subgraph. Our method relies on the exact separation of a relaxation of rank inequalities, which we call relaxed k -rank inequalities, whose closure is as tight. We investigate the corresponding separation problem, a bilevel programming problem asking for a subgraph of maximum weight with a bound on its stability number, whose study could be of independent interest. We first prove that the problem is Σ 2 P -hard and provide some insights on its polyhedral structure. We then propose two exact methods for its solution: a branch-and-cut algorithm (which relies on a family of faced-defining inequalities which we introduce in this paper) and a purely combinatorial branch-and-bound algorithm. Our computational results show that the closure of rank inequalities with a right-hand side no larger than a small constant can yield a bound that is stronger, in some cases, than Lovász’s Theta function, and substantially stronger than bounds obtained with standard inequalities that are valid for the stable set problem, including odd-cycle inequalities and wheel inequalities. Summary of Contribution: This paper proposes two original methods for solving a challenging cut-separation problem (of bilevel type) for a large class of inequalities valid for one of the key operations research problems, namely, the max stable set problem. An extensive set of experimental results validates the proposed methods. All the source code and data sets are available online on GitHub.</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.2021.1115</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Apexes ; bilevel programming ; branch-and-bound ; branch-and-cut ; Combinatorial analysis ; Computational mathematics ; cutting plane generation ; Graph theory ; Graphs ; Inequalities ; integer programming ; Mathematical problems ; maximum stable set problem ; rank inequalities ; Separation ; Stability ; Tightness ; Topology</subject><ispartof>INFORMS journal on computing, 2022-03, Vol.34 (2), p.1006-1023</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-646e53cf478cf453ea495050a09855f5ad0da4eeba9e99b5922a16855de602e03</citedby><cites>FETCH-LOGICAL-c300t-646e53cf478cf453ea495050a09855f5ad0da4eeba9e99b5922a16855de602e03</cites><orcidid>0000-0002-2111-3528 ; 0000-0001-9568-4385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/ijoc.2021.1115$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,3679,27901,27902,62589</link.rule.ids></links><search><creatorcontrib>Coniglio, Stefano</creatorcontrib><title>Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming</title><title>INFORMS journal on computing</title><description>In the context of the maximum stable set problem, rank inequalities impose that the cardinality of any set of vertices contained in a stable set be, at most, as large as the stability number of the subgraph induced by such a set. Rank inequalities are very general, as they subsume many classical inequalities such as clique, hole, antihole, web, and antiweb inequalities. In spite of their generality, the exact separation of rank inequalities has never been addressed without the introduction of topological restrictions on the induced subgraph and the tightness of their closure has never been investigated systematically. In this work, we propose a methodology for optimizing over the closure of all rank inequalities with a right-hand side no larger than a small constant without imposing any restrictions on the topology of the induced subgraph. Our method relies on the exact separation of a relaxation of rank inequalities, which we call relaxed k -rank inequalities, whose closure is as tight. We investigate the corresponding separation problem, a bilevel programming problem asking for a subgraph of maximum weight with a bound on its stability number, whose study could be of independent interest. We first prove that the problem is Σ 2 P -hard and provide some insights on its polyhedral structure. We then propose two exact methods for its solution: a branch-and-cut algorithm (which relies on a family of faced-defining inequalities which we introduce in this paper) and a purely combinatorial branch-and-bound algorithm. Our computational results show that the closure of rank inequalities with a right-hand side no larger than a small constant can yield a bound that is stronger, in some cases, than Lovász’s Theta function, and substantially stronger than bounds obtained with standard inequalities that are valid for the stable set problem, including odd-cycle inequalities and wheel inequalities. Summary of Contribution: This paper proposes two original methods for solving a challenging cut-separation problem (of bilevel type) for a large class of inequalities valid for one of the key operations research problems, namely, the max stable set problem. An extensive set of experimental results validates the proposed methods. All the source code and data sets are available online on GitHub.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>bilevel programming</subject><subject>branch-and-bound</subject><subject>branch-and-cut</subject><subject>Combinatorial analysis</subject><subject>Computational mathematics</subject><subject>cutting plane generation</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Inequalities</subject><subject>integer programming</subject><subject>Mathematical problems</subject><subject>maximum stable set problem</subject><subject>rank inequalities</subject><subject>Separation</subject><subject>Stability</subject><subject>Tightness</subject><subject>Topology</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu2zAMho1hA9Zlu-5MoGdnkmwp1rENurZAhw7NdjYYm06UWVYqyWm3J-hjV4YH7LgLSZA_f4Jfln3mbMlFtfpiDq5ZCib4knMu32RnXAqVSymqt6lmmue6kup99iGEA2OsLEp9lr3cH6Ox5o8ZduBO5CHuCda9C6MncB084PALbgd6HLE30VCAJxP3gLCx2PfwYHb7mN_g0MLGtASdmx2-4bOxo4VNxG1PsKEI371LpYWTQbg0PZ2on3o7j9am6x-zdx32gT79zYvs59erH-ub_O7--nZ9cZc3BWMxV6UiWTRduapSkAVhqSWTDFl6TnYSW9ZiSbRFTVpvpRYCuUqjlhQTxIpFdj77Hr17HCnE-uBGP6STtVBKK1ZUYpVUy1nVeBeCp64-emPR_645qyfa9US7nmjXE-20APMCNW4w4Z-84qoQqiwmz3yWmCFhsuF_lq9-54zK</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Coniglio, Stefano</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2111-3528</orcidid><orcidid>https://orcid.org/0000-0001-9568-4385</orcidid></search><sort><creationdate>20220301</creationdate><title>Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming</title><author>Coniglio, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-646e53cf478cf453ea495050a09855f5ad0da4eeba9e99b5922a16855de602e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>bilevel programming</topic><topic>branch-and-bound</topic><topic>branch-and-cut</topic><topic>Combinatorial analysis</topic><topic>Computational mathematics</topic><topic>cutting plane generation</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Inequalities</topic><topic>integer programming</topic><topic>Mathematical problems</topic><topic>maximum stable set problem</topic><topic>rank inequalities</topic><topic>Separation</topic><topic>Stability</topic><topic>Tightness</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coniglio, Stefano</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coniglio, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming</atitle><jtitle>INFORMS journal on computing</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>34</volume><issue>2</issue><spage>1006</spage><epage>1023</epage><pages>1006-1023</pages><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>In the context of the maximum stable set problem, rank inequalities impose that the cardinality of any set of vertices contained in a stable set be, at most, as large as the stability number of the subgraph induced by such a set. Rank inequalities are very general, as they subsume many classical inequalities such as clique, hole, antihole, web, and antiweb inequalities. In spite of their generality, the exact separation of rank inequalities has never been addressed without the introduction of topological restrictions on the induced subgraph and the tightness of their closure has never been investigated systematically. In this work, we propose a methodology for optimizing over the closure of all rank inequalities with a right-hand side no larger than a small constant without imposing any restrictions on the topology of the induced subgraph. Our method relies on the exact separation of a relaxation of rank inequalities, which we call relaxed k -rank inequalities, whose closure is as tight. We investigate the corresponding separation problem, a bilevel programming problem asking for a subgraph of maximum weight with a bound on its stability number, whose study could be of independent interest. We first prove that the problem is Σ 2 P -hard and provide some insights on its polyhedral structure. We then propose two exact methods for its solution: a branch-and-cut algorithm (which relies on a family of faced-defining inequalities which we introduce in this paper) and a purely combinatorial branch-and-bound algorithm. Our computational results show that the closure of rank inequalities with a right-hand side no larger than a small constant can yield a bound that is stronger, in some cases, than Lovász’s Theta function, and substantially stronger than bounds obtained with standard inequalities that are valid for the stable set problem, including odd-cycle inequalities and wheel inequalities. Summary of Contribution: This paper proposes two original methods for solving a challenging cut-separation problem (of bilevel type) for a large class of inequalities valid for one of the key operations research problems, namely, the max stable set problem. An extensive set of experimental results validates the proposed methods. All the source code and data sets are available online on GitHub.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/ijoc.2021.1115</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2111-3528</orcidid><orcidid>https://orcid.org/0000-0001-9568-4385</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1091-9856
ispartof INFORMS journal on computing, 2022-03, Vol.34 (2), p.1006-1023
issn 1091-9856
1526-5528
1091-9856
language eng
recordid cdi_proquest_journals_2669603827
source INFORMS PubsOnLine
subjects Algorithms
Apexes
bilevel programming
branch-and-bound
branch-and-cut
Combinatorial analysis
Computational mathematics
cutting plane generation
Graph theory
Graphs
Inequalities
integer programming
Mathematical problems
maximum stable set problem
rank inequalities
Separation
Stability
Tightness
Topology
title Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20over%20the%20Closure%20of%20Rank%20Inequalities%20with%20a%20Small%20Right-Hand%20Side%20for%20the%20Maximum%20Stable%20Set%20Problem%20via%20Bilevel%20Programming&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Coniglio,%20Stefano&rft.date=2022-03-01&rft.volume=34&rft.issue=2&rft.spage=1006&rft.epage=1023&rft.pages=1006-1023&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.2021.1115&rft_dat=%3Cproquest_cross%3E2669603827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669603827&rft_id=info:pmid/&rfr_iscdi=true