Bidirectional GRU networks‐based next POI category prediction for healthcare

The Corona Virus Disease 2019 has a great impact on public health and public psychology. People stay at home for a long time and rarely go out. With the improvement of the epidemic situation, people began to go to different places to check in. To maintain public mental health, it is necessary to pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2022-07, Vol.37 (7), p.4020-4040
Hauptverfasser: Liu, Yuwen, Song, Zuolong, Xu, Xiaolong, Rafique, Wajid, Zhang, Xuyun, Shen, Jun, Khosravi, Mohammad R., Qi, Lianyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4040
container_issue 7
container_start_page 4020
container_title International journal of intelligent systems
container_volume 37
creator Liu, Yuwen
Song, Zuolong
Xu, Xiaolong
Rafique, Wajid
Zhang, Xuyun
Shen, Jun
Khosravi, Mohammad R.
Qi, Lianyong
description The Corona Virus Disease 2019 has a great impact on public health and public psychology. People stay at home for a long time and rarely go out. With the improvement of the epidemic situation, people began to go to different places to check in. To maintain public mental health, it is necessary to propose a point‐of‐interest (POI) prediction model which can mine users' interests. However, the current techniques suffer from lower precision during prediction and the practical value is poor, which is due to the sparse data of users' check‐in. Faced with this challenge, we propose an attention‐based bidirectional gated recurrent unit (GRU) model for POI category prediction (ABG_poic). We regard the user's POI category as the user's interest preference because the fuzzy POI category is easier to reflect the user's interest than the POI. This method can alleviate the data sparsity, and protect users' location privacy. Since users' preferences are variable, we utilize a bidirectional GRU to capture the dynamic dependence of users' check‐ins. Furthermore, since the neural network is similar to a “black box” in feature learning, the decision‐making stage is opaque. Thus, we combine the attention mechanism with bidirectional GRU to selectively focus on historical check‐in records, which can improve the interpretability of the model. Considering the time impact on users' check‐in, we utilize the time sliding window in the ABG_poic model. Experiments on two data sets demonstrate that our ABG_poic outperforms the comparison models for POI category prediction on sparse check‐in data.
doi_str_mv 10.1002/int.22710
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2669522293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2669522293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-f48c3a013bcf094e9a70bf8ae3761100d8e83796cee9da53588ceb7cfdf3de7b3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYXvsGAKxdp5yfJTJZatBZKK9KCu2Eyc8emxqTOpNTufASf0ScxNm5dXbh858D5ELqkZEAJYcOiagaMCUqOUI-STEaU0udj1CNSxpGkgp-isxDWhFAq4qSHZreFLTyYpqgrXeLx0xJX0Oxq_xq-P79yHcC2j48GP84n2OgGXmq_xxsPtjhksKs9XoEum5XRHs7RidNlgIu_20fL-7vF6CGazseT0c00MpwzErlYGq4J5blxJIsh04LkTmrgIqXtDitBcpGlBiCzOuGJlAZyYZx13ILIeR9ddb0bX79vITRqXW99uyAolqZZwhjLeEtdd5TxdQgenNr44k37vaJE_epSrS510NWyw47dFSXs_wfVZLboEj8BM22n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669522293</pqid></control><display><type>article</type><title>Bidirectional GRU networks‐based next POI category prediction for healthcare</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Yuwen ; Song, Zuolong ; Xu, Xiaolong ; Rafique, Wajid ; Zhang, Xuyun ; Shen, Jun ; Khosravi, Mohammad R. ; Qi, Lianyong</creator><creatorcontrib>Liu, Yuwen ; Song, Zuolong ; Xu, Xiaolong ; Rafique, Wajid ; Zhang, Xuyun ; Shen, Jun ; Khosravi, Mohammad R. ; Qi, Lianyong</creatorcontrib><description>The Corona Virus Disease 2019 has a great impact on public health and public psychology. People stay at home for a long time and rarely go out. With the improvement of the epidemic situation, people began to go to different places to check in. To maintain public mental health, it is necessary to propose a point‐of‐interest (POI) prediction model which can mine users' interests. However, the current techniques suffer from lower precision during prediction and the practical value is poor, which is due to the sparse data of users' check‐in. Faced with this challenge, we propose an attention‐based bidirectional gated recurrent unit (GRU) model for POI category prediction (ABG_poic). We regard the user's POI category as the user's interest preference because the fuzzy POI category is easier to reflect the user's interest than the POI. This method can alleviate the data sparsity, and protect users' location privacy. Since users' preferences are variable, we utilize a bidirectional GRU to capture the dynamic dependence of users' check‐ins. Furthermore, since the neural network is similar to a “black box” in feature learning, the decision‐making stage is opaque. Thus, we combine the attention mechanism with bidirectional GRU to selectively focus on historical check‐in records, which can improve the interpretability of the model. Considering the time impact on users' check‐in, we utilize the time sliding window in the ABG_poic model. Experiments on two data sets demonstrate that our ABG_poic outperforms the comparison models for POI category prediction on sparse check‐in data.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22710</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>attention mechanism ; fuzzy system ; gated recurrent unit ; health services ; Intelligent systems ; Mental health ; Neural networks ; POI category prediction ; Prediction models ; Psychology ; Public health</subject><ispartof>International journal of intelligent systems, 2022-07, Vol.37 (7), p.4020-4040</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-f48c3a013bcf094e9a70bf8ae3761100d8e83796cee9da53588ceb7cfdf3de7b3</citedby><cites>FETCH-LOGICAL-c3320-f48c3a013bcf094e9a70bf8ae3761100d8e83796cee9da53588ceb7cfdf3de7b3</cites><orcidid>0000-0002-2029-5067 ; 0000-0002-4911-5744 ; 0000-0003-4879-9803 ; 0000-0002-9403-7140 ; 0000-0003-0162-6921 ; 0000-0001-7353-4159 ; 0000-0003-0168-8348 ; 0000-0001-9875-9856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22710$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22710$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Yuwen</creatorcontrib><creatorcontrib>Song, Zuolong</creatorcontrib><creatorcontrib>Xu, Xiaolong</creatorcontrib><creatorcontrib>Rafique, Wajid</creatorcontrib><creatorcontrib>Zhang, Xuyun</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Khosravi, Mohammad R.</creatorcontrib><creatorcontrib>Qi, Lianyong</creatorcontrib><title>Bidirectional GRU networks‐based next POI category prediction for healthcare</title><title>International journal of intelligent systems</title><description>The Corona Virus Disease 2019 has a great impact on public health and public psychology. People stay at home for a long time and rarely go out. With the improvement of the epidemic situation, people began to go to different places to check in. To maintain public mental health, it is necessary to propose a point‐of‐interest (POI) prediction model which can mine users' interests. However, the current techniques suffer from lower precision during prediction and the practical value is poor, which is due to the sparse data of users' check‐in. Faced with this challenge, we propose an attention‐based bidirectional gated recurrent unit (GRU) model for POI category prediction (ABG_poic). We regard the user's POI category as the user's interest preference because the fuzzy POI category is easier to reflect the user's interest than the POI. This method can alleviate the data sparsity, and protect users' location privacy. Since users' preferences are variable, we utilize a bidirectional GRU to capture the dynamic dependence of users' check‐ins. Furthermore, since the neural network is similar to a “black box” in feature learning, the decision‐making stage is opaque. Thus, we combine the attention mechanism with bidirectional GRU to selectively focus on historical check‐in records, which can improve the interpretability of the model. Considering the time impact on users' check‐in, we utilize the time sliding window in the ABG_poic model. Experiments on two data sets demonstrate that our ABG_poic outperforms the comparison models for POI category prediction on sparse check‐in data.</description><subject>attention mechanism</subject><subject>fuzzy system</subject><subject>gated recurrent unit</subject><subject>health services</subject><subject>Intelligent systems</subject><subject>Mental health</subject><subject>Neural networks</subject><subject>POI category prediction</subject><subject>Prediction models</subject><subject>Psychology</subject><subject>Public health</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYXvsGAKxdp5yfJTJZatBZKK9KCu2Eyc8emxqTOpNTufASf0ScxNm5dXbh858D5ELqkZEAJYcOiagaMCUqOUI-STEaU0udj1CNSxpGkgp-isxDWhFAq4qSHZreFLTyYpqgrXeLx0xJX0Oxq_xq-P79yHcC2j48GP84n2OgGXmq_xxsPtjhksKs9XoEum5XRHs7RidNlgIu_20fL-7vF6CGazseT0c00MpwzErlYGq4J5blxJIsh04LkTmrgIqXtDitBcpGlBiCzOuGJlAZyYZx13ILIeR9ddb0bX79vITRqXW99uyAolqZZwhjLeEtdd5TxdQgenNr44k37vaJE_epSrS510NWyw47dFSXs_wfVZLboEj8BM22n</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Liu, Yuwen</creator><creator>Song, Zuolong</creator><creator>Xu, Xiaolong</creator><creator>Rafique, Wajid</creator><creator>Zhang, Xuyun</creator><creator>Shen, Jun</creator><creator>Khosravi, Mohammad R.</creator><creator>Qi, Lianyong</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2029-5067</orcidid><orcidid>https://orcid.org/0000-0002-4911-5744</orcidid><orcidid>https://orcid.org/0000-0003-4879-9803</orcidid><orcidid>https://orcid.org/0000-0002-9403-7140</orcidid><orcidid>https://orcid.org/0000-0003-0162-6921</orcidid><orcidid>https://orcid.org/0000-0001-7353-4159</orcidid><orcidid>https://orcid.org/0000-0003-0168-8348</orcidid><orcidid>https://orcid.org/0000-0001-9875-9856</orcidid></search><sort><creationdate>202207</creationdate><title>Bidirectional GRU networks‐based next POI category prediction for healthcare</title><author>Liu, Yuwen ; Song, Zuolong ; Xu, Xiaolong ; Rafique, Wajid ; Zhang, Xuyun ; Shen, Jun ; Khosravi, Mohammad R. ; Qi, Lianyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-f48c3a013bcf094e9a70bf8ae3761100d8e83796cee9da53588ceb7cfdf3de7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention mechanism</topic><topic>fuzzy system</topic><topic>gated recurrent unit</topic><topic>health services</topic><topic>Intelligent systems</topic><topic>Mental health</topic><topic>Neural networks</topic><topic>POI category prediction</topic><topic>Prediction models</topic><topic>Psychology</topic><topic>Public health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuwen</creatorcontrib><creatorcontrib>Song, Zuolong</creatorcontrib><creatorcontrib>Xu, Xiaolong</creatorcontrib><creatorcontrib>Rafique, Wajid</creatorcontrib><creatorcontrib>Zhang, Xuyun</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Khosravi, Mohammad R.</creatorcontrib><creatorcontrib>Qi, Lianyong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuwen</au><au>Song, Zuolong</au><au>Xu, Xiaolong</au><au>Rafique, Wajid</au><au>Zhang, Xuyun</au><au>Shen, Jun</au><au>Khosravi, Mohammad R.</au><au>Qi, Lianyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional GRU networks‐based next POI category prediction for healthcare</atitle><jtitle>International journal of intelligent systems</jtitle><date>2022-07</date><risdate>2022</risdate><volume>37</volume><issue>7</issue><spage>4020</spage><epage>4040</epage><pages>4020-4040</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>The Corona Virus Disease 2019 has a great impact on public health and public psychology. People stay at home for a long time and rarely go out. With the improvement of the epidemic situation, people began to go to different places to check in. To maintain public mental health, it is necessary to propose a point‐of‐interest (POI) prediction model which can mine users' interests. However, the current techniques suffer from lower precision during prediction and the practical value is poor, which is due to the sparse data of users' check‐in. Faced with this challenge, we propose an attention‐based bidirectional gated recurrent unit (GRU) model for POI category prediction (ABG_poic). We regard the user's POI category as the user's interest preference because the fuzzy POI category is easier to reflect the user's interest than the POI. This method can alleviate the data sparsity, and protect users' location privacy. Since users' preferences are variable, we utilize a bidirectional GRU to capture the dynamic dependence of users' check‐ins. Furthermore, since the neural network is similar to a “black box” in feature learning, the decision‐making stage is opaque. Thus, we combine the attention mechanism with bidirectional GRU to selectively focus on historical check‐in records, which can improve the interpretability of the model. Considering the time impact on users' check‐in, we utilize the time sliding window in the ABG_poic model. Experiments on two data sets demonstrate that our ABG_poic outperforms the comparison models for POI category prediction on sparse check‐in data.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22710</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2029-5067</orcidid><orcidid>https://orcid.org/0000-0002-4911-5744</orcidid><orcidid>https://orcid.org/0000-0003-4879-9803</orcidid><orcidid>https://orcid.org/0000-0002-9403-7140</orcidid><orcidid>https://orcid.org/0000-0003-0162-6921</orcidid><orcidid>https://orcid.org/0000-0001-7353-4159</orcidid><orcidid>https://orcid.org/0000-0003-0168-8348</orcidid><orcidid>https://orcid.org/0000-0001-9875-9856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2022-07, Vol.37 (7), p.4020-4040
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_2669522293
source Wiley Online Library Journals Frontfile Complete
subjects attention mechanism
fuzzy system
gated recurrent unit
health services
Intelligent systems
Mental health
Neural networks
POI category prediction
Prediction models
Psychology
Public health
title Bidirectional GRU networks‐based next POI category prediction for healthcare
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20GRU%20networks%E2%80%90based%20next%20POI%20category%20prediction%20for%20healthcare&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Liu,%20Yuwen&rft.date=2022-07&rft.volume=37&rft.issue=7&rft.spage=4020&rft.epage=4040&rft.pages=4020-4040&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22710&rft_dat=%3Cproquest_cross%3E2669522293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669522293&rft_id=info:pmid/&rfr_iscdi=true