Supraparticles for Bare‐Eye H2 Indication and Monitoring: Design, Working Principle, and Molecular Mobility
Indicators for H2 are crucial to ensure safety standards in a green hydrogen economy. Herein, the authors report micron‐scaled indicator supraparticles for real‐time monitoring and irreversible recording of H2 gas via a rapid eye‐readable two‐step color change. They are produced via spray‐drying SiO...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-05, Vol.32 (22), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Indicators for H2 are crucial to ensure safety standards in a green hydrogen economy. Herein, the authors report micron‐scaled indicator supraparticles for real‐time monitoring and irreversible recording of H2 gas via a rapid eye‐readable two‐step color change. They are produced via spray‐drying SiO2 nanoparticles, AuPd nanoparticles, and indicator‐dye resazurin. The resulting gas‐accessible mesoporous supraparticle framework absorbs water from humid atmospheres to create a three‐phase‐system. In the presence of H2, the color of the supraparticle switches first irreversibly from purple to pink and further reversibly to a colorless state. In situ infrared spectroscopy measurements indicate that this color change originates from the (ir)reversible H2‐induced reduction of resazurin to resorufin and hydroresorufin. Further infrared spectroscopic measurements and molecular dynamics simulations elucidate that key to achieve this functionality is an established three‐phase‐system within the supraparticles, granting molecular mobility of resazurin. Water acts as transport medium to carry resazurin molecules towards the catalytically active AuPd nanoparticles. The advantages of the supraparticles are their small dimensions, affordable and scalable production, fast response times, straightforward bare‐eye detection, and the possibility of simultaneously monitoring H2 exposure in real‐time and ex post. Therefore, H2 indicator supraparticles are an attractive safety additive for leakage detection and localization in a H2 economy.
SiO2 and AuPd nanoparticles are combined with resazurin‐dye into gas‐accessible mesoporous supraparticles. In humid atmospheres, they absorb water to create a three‐phase‐system enabling molecular mobility. Upon exposure to H2 gas, the supraparticles show a rapid, eye‐readable two‐step color change that allows for simultaneous real‐time monitoring and recording of H2 ex post and, thereby, expands the horizon of classic gasochromic H2 sensors. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202112379 |