3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application
Here, we report the physical electro-thermal modeling of nanoscale Y 2 O 3 -based memristor devices. The simulation is carried out by the combined software package of COMSOL Multiphysics and MATLAB. The presented physical modeling is based on the minimization of free energy at an applied voltage. Th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-06, Vol.69 (6), p.3124-3129 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3129 |
---|---|
container_issue | 6 |
container_start_page | 3124 |
container_title | IEEE transactions on electron devices |
container_volume | 69 |
creator | Kumar, Sanjay Gautam, Mohit Kumar Gill, Gurpreet Singh Mukherjee, Shaibal |
description | Here, we report the physical electro-thermal modeling of nanoscale Y 2 O 3 -based memristor devices. The simulation is carried out by the combined software package of COMSOL Multiphysics and MATLAB. The presented physical modeling is based on the minimization of free energy at an applied voltage. The simulated results exhibit a stable pinched hysteresis loop in resistive switching (RS) response in multiple switching cycles. The RS responses show low values of coefficient of variability ( {C}_{V} ), i.e., 17.36% and 17.09% in SET and RESET voltages, respectively, during cycle-to-cycle variation. The impact of voltage ramp rate ( {V}_{RR} ) on the device characteristics such as switching response and synaptic plasticity behavior of the device is investigated. The simulated outcomes significantly depict the impact of oxide layer thickness on the switching voltages in the nanoscale device. |
doi_str_mv | 10.1109/TED.2022.3166858 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2669164611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9761894</ieee_id><sourcerecordid>2669164611</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-575d30f8ddede57edf2fa2360e301937de6ea05f31e861c9eea032b2be130d503</originalsourceid><addsrcrecordid>eNotj89LwzAYhoMoOKd3wUvAc2aSr0mb45jzB2xOcB7EQ-mary6ja2rSHfbfG5inlwce3peXkFvBJ0Jw87CeP04kl3ICQutCFWdkJJTKmdGZPicjzkXBDBRwSa5i3CXUWSZH5BvYI33fHqOrq5bOW6yH4Nl6i2GfeOkttq77ob6hb1XnY5KQfskV0CXug4uDD5E2PtCPY1f1g6vptO_b1DU4312Ti6ZqI97855h8Ps3Xsxe2WD2_zqYL5gTAwFSuLPCmsBYtqhxtI5tKguYIXBjILWqsuGpAYKFFbTARyI3coABuFYcxuT_19sH_HjAO5c4fQpcmS6m1SU-1EMm6O1kOEcs-uH0VjqXJtShMBn-TYl1p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669164611</pqid></control><display><type>article</type><title>3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application</title><source>IEEE Electronic Library (IEL)</source><creator>Kumar, Sanjay ; Gautam, Mohit Kumar ; Gill, Gurpreet Singh ; Mukherjee, Shaibal</creator><creatorcontrib>Kumar, Sanjay ; Gautam, Mohit Kumar ; Gill, Gurpreet Singh ; Mukherjee, Shaibal</creatorcontrib><description><![CDATA[Here, we report the physical electro-thermal modeling of nanoscale Y 2 O 3 -based memristor devices. The simulation is carried out by the combined software package of COMSOL Multiphysics and MATLAB. The presented physical modeling is based on the minimization of free energy at an applied voltage. The simulated results exhibit a stable pinched hysteresis loop in resistive switching (RS) response in multiple switching cycles. The RS responses show low values of coefficient of variability (<inline-formula> <tex-math notation="LaTeX">{C}_{V} </tex-math></inline-formula>), i.e., 17.36% and 17.09% in SET and RESET voltages, respectively, during cycle-to-cycle variation. The impact of voltage ramp rate (<inline-formula> <tex-math notation="LaTeX">{V}_{RR} </tex-math></inline-formula>) on the device characteristics such as switching response and synaptic plasticity behavior of the device is investigated. The simulated outcomes significantly depict the impact of oxide layer thickness on the switching voltages in the nanoscale device.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3166858</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Electric potential ; Electro-thermal modeling ; Free energy ; Hysteresis loops ; Iron ; Mathematical models ; memristor system ; Memristors ; Modelling ; Nanoscale devices ; Nanotechnology devices ; Numerical models ; Simulation ; Switches ; Switching ; synaptic behavior ; Thermal analysis ; Thickness ; Three dimensional models ; Voltage ; Yttrium oxide ; Y₂O</subject><ispartof>IEEE transactions on electron devices, 2022-06, Vol.69 (6), p.3124-3129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9879-7278 ; 0000-0002-5498-1823 ; 0000-0001-5382-2006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9761894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9761894$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Gautam, Mohit Kumar</creatorcontrib><creatorcontrib>Gill, Gurpreet Singh</creatorcontrib><creatorcontrib>Mukherjee, Shaibal</creatorcontrib><title>3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Here, we report the physical electro-thermal modeling of nanoscale Y 2 O 3 -based memristor devices. The simulation is carried out by the combined software package of COMSOL Multiphysics and MATLAB. The presented physical modeling is based on the minimization of free energy at an applied voltage. The simulated results exhibit a stable pinched hysteresis loop in resistive switching (RS) response in multiple switching cycles. The RS responses show low values of coefficient of variability (<inline-formula> <tex-math notation="LaTeX">{C}_{V} </tex-math></inline-formula>), i.e., 17.36% and 17.09% in SET and RESET voltages, respectively, during cycle-to-cycle variation. The impact of voltage ramp rate (<inline-formula> <tex-math notation="LaTeX">{V}_{RR} </tex-math></inline-formula>) on the device characteristics such as switching response and synaptic plasticity behavior of the device is investigated. The simulated outcomes significantly depict the impact of oxide layer thickness on the switching voltages in the nanoscale device.]]></description><subject>Electric potential</subject><subject>Electro-thermal modeling</subject><subject>Free energy</subject><subject>Hysteresis loops</subject><subject>Iron</subject><subject>Mathematical models</subject><subject>memristor system</subject><subject>Memristors</subject><subject>Modelling</subject><subject>Nanoscale devices</subject><subject>Nanotechnology devices</subject><subject>Numerical models</subject><subject>Simulation</subject><subject>Switches</subject><subject>Switching</subject><subject>synaptic behavior</subject><subject>Thermal analysis</subject><subject>Thickness</subject><subject>Three dimensional models</subject><subject>Voltage</subject><subject>Yttrium oxide</subject><subject>Y₂O</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj89LwzAYhoMoOKd3wUvAc2aSr0mb45jzB2xOcB7EQ-mary6ja2rSHfbfG5inlwce3peXkFvBJ0Jw87CeP04kl3ICQutCFWdkJJTKmdGZPicjzkXBDBRwSa5i3CXUWSZH5BvYI33fHqOrq5bOW6yH4Nl6i2GfeOkttq77ob6hb1XnY5KQfskV0CXug4uDD5E2PtCPY1f1g6vptO_b1DU4312Ti6ZqI97855h8Ps3Xsxe2WD2_zqYL5gTAwFSuLPCmsBYtqhxtI5tKguYIXBjILWqsuGpAYKFFbTARyI3coABuFYcxuT_19sH_HjAO5c4fQpcmS6m1SU-1EMm6O1kOEcs-uH0VjqXJtShMBn-TYl1p</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Kumar, Sanjay</creator><creator>Gautam, Mohit Kumar</creator><creator>Gill, Gurpreet Singh</creator><creator>Mukherjee, Shaibal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9879-7278</orcidid><orcidid>https://orcid.org/0000-0002-5498-1823</orcidid><orcidid>https://orcid.org/0000-0001-5382-2006</orcidid></search><sort><creationdate>202206</creationdate><title>3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application</title><author>Kumar, Sanjay ; Gautam, Mohit Kumar ; Gill, Gurpreet Singh ; Mukherjee, Shaibal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-575d30f8ddede57edf2fa2360e301937de6ea05f31e861c9eea032b2be130d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electric potential</topic><topic>Electro-thermal modeling</topic><topic>Free energy</topic><topic>Hysteresis loops</topic><topic>Iron</topic><topic>Mathematical models</topic><topic>memristor system</topic><topic>Memristors</topic><topic>Modelling</topic><topic>Nanoscale devices</topic><topic>Nanotechnology devices</topic><topic>Numerical models</topic><topic>Simulation</topic><topic>Switches</topic><topic>Switching</topic><topic>synaptic behavior</topic><topic>Thermal analysis</topic><topic>Thickness</topic><topic>Three dimensional models</topic><topic>Voltage</topic><topic>Yttrium oxide</topic><topic>Y₂O</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Gautam, Mohit Kumar</creatorcontrib><creatorcontrib>Gill, Gurpreet Singh</creatorcontrib><creatorcontrib>Mukherjee, Shaibal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, Sanjay</au><au>Gautam, Mohit Kumar</au><au>Gill, Gurpreet Singh</au><au>Mukherjee, Shaibal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-06</date><risdate>2022</risdate><volume>69</volume><issue>6</issue><spage>3124</spage><epage>3129</epage><pages>3124-3129</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Here, we report the physical electro-thermal modeling of nanoscale Y 2 O 3 -based memristor devices. The simulation is carried out by the combined software package of COMSOL Multiphysics and MATLAB. The presented physical modeling is based on the minimization of free energy at an applied voltage. The simulated results exhibit a stable pinched hysteresis loop in resistive switching (RS) response in multiple switching cycles. The RS responses show low values of coefficient of variability (<inline-formula> <tex-math notation="LaTeX">{C}_{V} </tex-math></inline-formula>), i.e., 17.36% and 17.09% in SET and RESET voltages, respectively, during cycle-to-cycle variation. The impact of voltage ramp rate (<inline-formula> <tex-math notation="LaTeX">{V}_{RR} </tex-math></inline-formula>) on the device characteristics such as switching response and synaptic plasticity behavior of the device is investigated. The simulated outcomes significantly depict the impact of oxide layer thickness on the switching voltages in the nanoscale device.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3166858</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9879-7278</orcidid><orcidid>https://orcid.org/0000-0002-5498-1823</orcidid><orcidid>https://orcid.org/0000-0001-5382-2006</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2022-06, Vol.69 (6), p.3124-3129 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2669164611 |
source | IEEE Electronic Library (IEL) |
subjects | Electric potential Electro-thermal modeling Free energy Hysteresis loops Iron Mathematical models memristor system Memristors Modelling Nanoscale devices Nanotechnology devices Numerical models Simulation Switches Switching synaptic behavior Thermal analysis Thickness Three dimensional models Voltage Yttrium oxide Y₂O |
title | 3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Physical%20Electro-Thermal%20Modeling%20of%20Nanoscale%20Y2O3%20Memristors%20for%20Synaptic%20Application&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kumar,%20Sanjay&rft.date=2022-06&rft.volume=69&rft.issue=6&rft.spage=3124&rft.epage=3129&rft.pages=3124-3129&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3166858&rft_dat=%3Cproquest_RIE%3E2669164611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669164611&rft_id=info:pmid/&rft_ieee_id=9761894&rfr_iscdi=true |