3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application

Here, we report the physical electro-thermal modeling of nanoscale Y 2 O 3 -based memristor devices. The simulation is carried out by the combined software package of COMSOL Multiphysics and MATLAB. The presented physical modeling is based on the minimization of free energy at an applied voltage. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-06, Vol.69 (6), p.3124-3129
Hauptverfasser: Kumar, Sanjay, Gautam, Mohit Kumar, Gill, Gurpreet Singh, Mukherjee, Shaibal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3129
container_issue 6
container_start_page 3124
container_title IEEE transactions on electron devices
container_volume 69
creator Kumar, Sanjay
Gautam, Mohit Kumar
Gill, Gurpreet Singh
Mukherjee, Shaibal
description Here, we report the physical electro-thermal modeling of nanoscale Y 2 O 3 -based memristor devices. The simulation is carried out by the combined software package of COMSOL Multiphysics and MATLAB. The presented physical modeling is based on the minimization of free energy at an applied voltage. The simulated results exhibit a stable pinched hysteresis loop in resistive switching (RS) response in multiple switching cycles. The RS responses show low values of coefficient of variability ( {C}_{V} ), i.e., 17.36% and 17.09% in SET and RESET voltages, respectively, during cycle-to-cycle variation. The impact of voltage ramp rate ( {V}_{RR} ) on the device characteristics such as switching response and synaptic plasticity behavior of the device is investigated. The simulated outcomes significantly depict the impact of oxide layer thickness on the switching voltages in the nanoscale device.
doi_str_mv 10.1109/TED.2022.3166858
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2669164611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9761894</ieee_id><sourcerecordid>2669164611</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-575d30f8ddede57edf2fa2360e301937de6ea05f31e861c9eea032b2be130d503</originalsourceid><addsrcrecordid>eNotj89LwzAYhoMoOKd3wUvAc2aSr0mb45jzB2xOcB7EQ-mary6ja2rSHfbfG5inlwce3peXkFvBJ0Jw87CeP04kl3ICQutCFWdkJJTKmdGZPicjzkXBDBRwSa5i3CXUWSZH5BvYI33fHqOrq5bOW6yH4Nl6i2GfeOkttq77ob6hb1XnY5KQfskV0CXug4uDD5E2PtCPY1f1g6vptO_b1DU4312Ti6ZqI97855h8Ps3Xsxe2WD2_zqYL5gTAwFSuLPCmsBYtqhxtI5tKguYIXBjILWqsuGpAYKFFbTARyI3coABuFYcxuT_19sH_HjAO5c4fQpcmS6m1SU-1EMm6O1kOEcs-uH0VjqXJtShMBn-TYl1p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669164611</pqid></control><display><type>article</type><title>3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application</title><source>IEEE Electronic Library (IEL)</source><creator>Kumar, Sanjay ; Gautam, Mohit Kumar ; Gill, Gurpreet Singh ; Mukherjee, Shaibal</creator><creatorcontrib>Kumar, Sanjay ; Gautam, Mohit Kumar ; Gill, Gurpreet Singh ; Mukherjee, Shaibal</creatorcontrib><description><![CDATA[Here, we report the physical electro-thermal modeling of nanoscale Y 2 O 3 -based memristor devices. The simulation is carried out by the combined software package of COMSOL Multiphysics and MATLAB. The presented physical modeling is based on the minimization of free energy at an applied voltage. The simulated results exhibit a stable pinched hysteresis loop in resistive switching (RS) response in multiple switching cycles. The RS responses show low values of coefficient of variability (<inline-formula> <tex-math notation="LaTeX">{C}_{V} </tex-math></inline-formula>), i.e., 17.36% and 17.09% in SET and RESET voltages, respectively, during cycle-to-cycle variation. The impact of voltage ramp rate (<inline-formula> <tex-math notation="LaTeX">{V}_{RR} </tex-math></inline-formula>) on the device characteristics such as switching response and synaptic plasticity behavior of the device is investigated. The simulated outcomes significantly depict the impact of oxide layer thickness on the switching voltages in the nanoscale device.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3166858</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Electric potential ; Electro-thermal modeling ; Free energy ; Hysteresis loops ; Iron ; Mathematical models ; memristor system ; Memristors ; Modelling ; Nanoscale devices ; Nanotechnology devices ; Numerical models ; Simulation ; Switches ; Switching ; synaptic behavior ; Thermal analysis ; Thickness ; Three dimensional models ; Voltage ; Yttrium oxide ; Y₂O</subject><ispartof>IEEE transactions on electron devices, 2022-06, Vol.69 (6), p.3124-3129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9879-7278 ; 0000-0002-5498-1823 ; 0000-0001-5382-2006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9761894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9761894$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Gautam, Mohit Kumar</creatorcontrib><creatorcontrib>Gill, Gurpreet Singh</creatorcontrib><creatorcontrib>Mukherjee, Shaibal</creatorcontrib><title>3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Here, we report the physical electro-thermal modeling of nanoscale Y 2 O 3 -based memristor devices. The simulation is carried out by the combined software package of COMSOL Multiphysics and MATLAB. The presented physical modeling is based on the minimization of free energy at an applied voltage. The simulated results exhibit a stable pinched hysteresis loop in resistive switching (RS) response in multiple switching cycles. The RS responses show low values of coefficient of variability (<inline-formula> <tex-math notation="LaTeX">{C}_{V} </tex-math></inline-formula>), i.e., 17.36% and 17.09% in SET and RESET voltages, respectively, during cycle-to-cycle variation. The impact of voltage ramp rate (<inline-formula> <tex-math notation="LaTeX">{V}_{RR} </tex-math></inline-formula>) on the device characteristics such as switching response and synaptic plasticity behavior of the device is investigated. The simulated outcomes significantly depict the impact of oxide layer thickness on the switching voltages in the nanoscale device.]]></description><subject>Electric potential</subject><subject>Electro-thermal modeling</subject><subject>Free energy</subject><subject>Hysteresis loops</subject><subject>Iron</subject><subject>Mathematical models</subject><subject>memristor system</subject><subject>Memristors</subject><subject>Modelling</subject><subject>Nanoscale devices</subject><subject>Nanotechnology devices</subject><subject>Numerical models</subject><subject>Simulation</subject><subject>Switches</subject><subject>Switching</subject><subject>synaptic behavior</subject><subject>Thermal analysis</subject><subject>Thickness</subject><subject>Three dimensional models</subject><subject>Voltage</subject><subject>Yttrium oxide</subject><subject>Y₂O</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj89LwzAYhoMoOKd3wUvAc2aSr0mb45jzB2xOcB7EQ-mary6ja2rSHfbfG5inlwce3peXkFvBJ0Jw87CeP04kl3ICQutCFWdkJJTKmdGZPicjzkXBDBRwSa5i3CXUWSZH5BvYI33fHqOrq5bOW6yH4Nl6i2GfeOkttq77ob6hb1XnY5KQfskV0CXug4uDD5E2PtCPY1f1g6vptO_b1DU4312Ti6ZqI97855h8Ps3Xsxe2WD2_zqYL5gTAwFSuLPCmsBYtqhxtI5tKguYIXBjILWqsuGpAYKFFbTARyI3coABuFYcxuT_19sH_HjAO5c4fQpcmS6m1SU-1EMm6O1kOEcs-uH0VjqXJtShMBn-TYl1p</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Kumar, Sanjay</creator><creator>Gautam, Mohit Kumar</creator><creator>Gill, Gurpreet Singh</creator><creator>Mukherjee, Shaibal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9879-7278</orcidid><orcidid>https://orcid.org/0000-0002-5498-1823</orcidid><orcidid>https://orcid.org/0000-0001-5382-2006</orcidid></search><sort><creationdate>202206</creationdate><title>3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application</title><author>Kumar, Sanjay ; Gautam, Mohit Kumar ; Gill, Gurpreet Singh ; Mukherjee, Shaibal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-575d30f8ddede57edf2fa2360e301937de6ea05f31e861c9eea032b2be130d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electric potential</topic><topic>Electro-thermal modeling</topic><topic>Free energy</topic><topic>Hysteresis loops</topic><topic>Iron</topic><topic>Mathematical models</topic><topic>memristor system</topic><topic>Memristors</topic><topic>Modelling</topic><topic>Nanoscale devices</topic><topic>Nanotechnology devices</topic><topic>Numerical models</topic><topic>Simulation</topic><topic>Switches</topic><topic>Switching</topic><topic>synaptic behavior</topic><topic>Thermal analysis</topic><topic>Thickness</topic><topic>Three dimensional models</topic><topic>Voltage</topic><topic>Yttrium oxide</topic><topic>Y₂O</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Gautam, Mohit Kumar</creatorcontrib><creatorcontrib>Gill, Gurpreet Singh</creatorcontrib><creatorcontrib>Mukherjee, Shaibal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, Sanjay</au><au>Gautam, Mohit Kumar</au><au>Gill, Gurpreet Singh</au><au>Mukherjee, Shaibal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-06</date><risdate>2022</risdate><volume>69</volume><issue>6</issue><spage>3124</spage><epage>3129</epage><pages>3124-3129</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Here, we report the physical electro-thermal modeling of nanoscale Y 2 O 3 -based memristor devices. The simulation is carried out by the combined software package of COMSOL Multiphysics and MATLAB. The presented physical modeling is based on the minimization of free energy at an applied voltage. The simulated results exhibit a stable pinched hysteresis loop in resistive switching (RS) response in multiple switching cycles. The RS responses show low values of coefficient of variability (<inline-formula> <tex-math notation="LaTeX">{C}_{V} </tex-math></inline-formula>), i.e., 17.36% and 17.09% in SET and RESET voltages, respectively, during cycle-to-cycle variation. The impact of voltage ramp rate (<inline-formula> <tex-math notation="LaTeX">{V}_{RR} </tex-math></inline-formula>) on the device characteristics such as switching response and synaptic plasticity behavior of the device is investigated. The simulated outcomes significantly depict the impact of oxide layer thickness on the switching voltages in the nanoscale device.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3166858</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9879-7278</orcidid><orcidid>https://orcid.org/0000-0002-5498-1823</orcidid><orcidid>https://orcid.org/0000-0001-5382-2006</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-06, Vol.69 (6), p.3124-3129
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2669164611
source IEEE Electronic Library (IEL)
subjects Electric potential
Electro-thermal modeling
Free energy
Hysteresis loops
Iron
Mathematical models
memristor system
Memristors
Modelling
Nanoscale devices
Nanotechnology devices
Numerical models
Simulation
Switches
Switching
synaptic behavior
Thermal analysis
Thickness
Three dimensional models
Voltage
Yttrium oxide
Y₂O
title 3-D Physical Electro-Thermal Modeling of Nanoscale Y2O3 Memristors for Synaptic Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Physical%20Electro-Thermal%20Modeling%20of%20Nanoscale%20Y2O3%20Memristors%20for%20Synaptic%20Application&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kumar,%20Sanjay&rft.date=2022-06&rft.volume=69&rft.issue=6&rft.spage=3124&rft.epage=3129&rft.pages=3124-3129&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3166858&rft_dat=%3Cproquest_RIE%3E2669164611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669164611&rft_id=info:pmid/&rft_ieee_id=9761894&rfr_iscdi=true