Temporal Pyramid Network With Spatial-Temporal Attention for Pedestrian Trajectory Prediction
Understanding and predicting human motion behavior with social interactions have become an increasingly crucial problem for a vast number of applications, ranging from visual navigation of autonomous vehicles to activity prediction of intelligent video surveillance. Accurately forecasting crowd moti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on network science and engineering 2022-05, Vol.9 (3), p.1006-1019 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1019 |
---|---|
container_issue | 3 |
container_start_page | 1006 |
container_title | IEEE transactions on network science and engineering |
container_volume | 9 |
creator | Li, Yuanman Liang, Rongqin Wei, Wei Wang, Wei Zhou, Jiantao Li, Xia |
description | Understanding and predicting human motion behavior with social interactions have become an increasingly crucial problem for a vast number of applications, ranging from visual navigation of autonomous vehicles to activity prediction of intelligent video surveillance. Accurately forecasting crowd motion behavior is challenging due to the multimodal nature of trajectories and complex social interactions between humans. Recent algorithms model and predict the trajectory with a single resolution, making them difficult to exploit the long-range information and the short-range information of the motion behavior simultaneously. In this paper, we propose a temporal pyramid network for pedestrian trajectory prediction through a squeeze modulation and a dilation modulation. The hierarchical design of our framework allows to model the trajectory with multi-resolution, then can better capture the motion behavior at various tempos. By progressively combining the global context with the local one, we finally construct a coarse-to-fine hierarchical pedestrian trajectory prediction framework with multi-supervision. Further, we introduce a unified spatial-temporal attention mechanism to adaptively select important information of persons around in both spatial and temporal domains. We show that our attention strategy is intuitive and effective to encode the influence of social interactions. Experimental results on two benchmarks demonstrate the superiority of our proposed scheme. |
doi_str_mv | 10.1109/TNSE.2021.3065019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2669159214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373939</ieee_id><sourcerecordid>2669159214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-33f2fe5d74eeaaf9d0701bcf014d0ccd9e560316e59f068b930fdff96f5fc2773</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWLQ_QLwEPG_Nx262OZZSP6DUQlf0IiFNJpjabtZsivTfu0tLmcPM4XlnhgehO0pGlBL5WC1WsxEjjI44EQWh8gINGOd5xpn8vOxnVma5kOU1GrbthhBC2Vhwzgfoq4JdE6Le4uUh6p23eAHpL8Qf_OHTN141Onm9zc7UJCWokw81diHiJVhoU_S6xlXUGzApxANeRrDe9NAtunJ628Lw1G_Q-9Osmr5k87fn1-lknhkmeco4d8xBYcscQGsnLSkJXRtHaG6JMVZCIQinAgrpiBivJSfOOieFK5xhZclv0MNxbxPD7757SW3CPtbdScWEkLSQjOYdRY-UiaFtIzjVRL_T8aAoUb1I1YtUvUh1Etll7o8ZDwBnXvKSy67-AeO1cIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669159214</pqid></control><display><type>article</type><title>Temporal Pyramid Network With Spatial-Temporal Attention for Pedestrian Trajectory Prediction</title><source>IEEE Xplore</source><creator>Li, Yuanman ; Liang, Rongqin ; Wei, Wei ; Wang, Wei ; Zhou, Jiantao ; Li, Xia</creator><creatorcontrib>Li, Yuanman ; Liang, Rongqin ; Wei, Wei ; Wang, Wei ; Zhou, Jiantao ; Li, Xia</creatorcontrib><description>Understanding and predicting human motion behavior with social interactions have become an increasingly crucial problem for a vast number of applications, ranging from visual navigation of autonomous vehicles to activity prediction of intelligent video surveillance. Accurately forecasting crowd motion behavior is challenging due to the multimodal nature of trajectories and complex social interactions between humans. Recent algorithms model and predict the trajectory with a single resolution, making them difficult to exploit the long-range information and the short-range information of the motion behavior simultaneously. In this paper, we propose a temporal pyramid network for pedestrian trajectory prediction through a squeeze modulation and a dilation modulation. The hierarchical design of our framework allows to model the trajectory with multi-resolution, then can better capture the motion behavior at various tempos. By progressively combining the global context with the local one, we finally construct a coarse-to-fine hierarchical pedestrian trajectory prediction framework with multi-supervision. Further, we introduce a unified spatial-temporal attention mechanism to adaptively select important information of persons around in both spatial and temporal domains. We show that our attention strategy is intuitive and effective to encode the influence of social interactions. Experimental results on two benchmarks demonstrate the superiority of our proposed scheme.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2021.3065019</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous navigation ; Computational modeling ; Deep learning ; Feature extraction ; Human motion ; Modulation ; Prediction algorithms ; Predictions ; Predictive models ; social behavior ; social computing ; Social factors ; Social interaction ; social interactions ; spatial-temporal attention ; Task analysis ; temporal pyramid network ; Trajectories ; Trajectory ; trajectory prediction</subject><ispartof>IEEE transactions on network science and engineering, 2022-05, Vol.9 (3), p.1006-1019</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-33f2fe5d74eeaaf9d0701bcf014d0ccd9e560316e59f068b930fdff96f5fc2773</citedby><cites>FETCH-LOGICAL-c293t-33f2fe5d74eeaaf9d0701bcf014d0ccd9e560316e59f068b930fdff96f5fc2773</cites><orcidid>0000-0002-5987-738X ; 0000-0002-6015-2618 ; 0000-0002-7566-2995 ; 0000-0002-7313-6561 ; 0000-0002-8043-9966 ; 0000-0002-9134-4866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9373939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yuanman</creatorcontrib><creatorcontrib>Liang, Rongqin</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhou, Jiantao</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><title>Temporal Pyramid Network With Spatial-Temporal Attention for Pedestrian Trajectory Prediction</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>Understanding and predicting human motion behavior with social interactions have become an increasingly crucial problem for a vast number of applications, ranging from visual navigation of autonomous vehicles to activity prediction of intelligent video surveillance. Accurately forecasting crowd motion behavior is challenging due to the multimodal nature of trajectories and complex social interactions between humans. Recent algorithms model and predict the trajectory with a single resolution, making them difficult to exploit the long-range information and the short-range information of the motion behavior simultaneously. In this paper, we propose a temporal pyramid network for pedestrian trajectory prediction through a squeeze modulation and a dilation modulation. The hierarchical design of our framework allows to model the trajectory with multi-resolution, then can better capture the motion behavior at various tempos. By progressively combining the global context with the local one, we finally construct a coarse-to-fine hierarchical pedestrian trajectory prediction framework with multi-supervision. Further, we introduce a unified spatial-temporal attention mechanism to adaptively select important information of persons around in both spatial and temporal domains. We show that our attention strategy is intuitive and effective to encode the influence of social interactions. Experimental results on two benchmarks demonstrate the superiority of our proposed scheme.</description><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Human motion</subject><subject>Modulation</subject><subject>Prediction algorithms</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>social behavior</subject><subject>social computing</subject><subject>Social factors</subject><subject>Social interaction</subject><subject>social interactions</subject><subject>spatial-temporal attention</subject><subject>Task analysis</subject><subject>temporal pyramid network</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>trajectory prediction</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWLQ_QLwEPG_Nx262OZZSP6DUQlf0IiFNJpjabtZsivTfu0tLmcPM4XlnhgehO0pGlBL5WC1WsxEjjI44EQWh8gINGOd5xpn8vOxnVma5kOU1GrbthhBC2Vhwzgfoq4JdE6Le4uUh6p23eAHpL8Qf_OHTN141Onm9zc7UJCWokw81diHiJVhoU_S6xlXUGzApxANeRrDe9NAtunJ628Lw1G_Q-9Osmr5k87fn1-lknhkmeco4d8xBYcscQGsnLSkJXRtHaG6JMVZCIQinAgrpiBivJSfOOieFK5xhZclv0MNxbxPD7757SW3CPtbdScWEkLSQjOYdRY-UiaFtIzjVRL_T8aAoUb1I1YtUvUh1Etll7o8ZDwBnXvKSy67-AeO1cIE</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Li, Yuanman</creator><creator>Liang, Rongqin</creator><creator>Wei, Wei</creator><creator>Wang, Wei</creator><creator>Zhou, Jiantao</creator><creator>Li, Xia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5987-738X</orcidid><orcidid>https://orcid.org/0000-0002-6015-2618</orcidid><orcidid>https://orcid.org/0000-0002-7566-2995</orcidid><orcidid>https://orcid.org/0000-0002-7313-6561</orcidid><orcidid>https://orcid.org/0000-0002-8043-9966</orcidid><orcidid>https://orcid.org/0000-0002-9134-4866</orcidid></search><sort><creationdate>20220501</creationdate><title>Temporal Pyramid Network With Spatial-Temporal Attention for Pedestrian Trajectory Prediction</title><author>Li, Yuanman ; Liang, Rongqin ; Wei, Wei ; Wang, Wei ; Zhou, Jiantao ; Li, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-33f2fe5d74eeaaf9d0701bcf014d0ccd9e560316e59f068b930fdff96f5fc2773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Human motion</topic><topic>Modulation</topic><topic>Prediction algorithms</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>social behavior</topic><topic>social computing</topic><topic>Social factors</topic><topic>Social interaction</topic><topic>social interactions</topic><topic>spatial-temporal attention</topic><topic>Task analysis</topic><topic>temporal pyramid network</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>trajectory prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuanman</creatorcontrib><creatorcontrib>Liang, Rongqin</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhou, Jiantao</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yuanman</au><au>Liang, Rongqin</au><au>Wei, Wei</au><au>Wang, Wei</au><au>Zhou, Jiantao</au><au>Li, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal Pyramid Network With Spatial-Temporal Attention for Pedestrian Trajectory Prediction</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>9</volume><issue>3</issue><spage>1006</spage><epage>1019</epage><pages>1006-1019</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>Understanding and predicting human motion behavior with social interactions have become an increasingly crucial problem for a vast number of applications, ranging from visual navigation of autonomous vehicles to activity prediction of intelligent video surveillance. Accurately forecasting crowd motion behavior is challenging due to the multimodal nature of trajectories and complex social interactions between humans. Recent algorithms model and predict the trajectory with a single resolution, making them difficult to exploit the long-range information and the short-range information of the motion behavior simultaneously. In this paper, we propose a temporal pyramid network for pedestrian trajectory prediction through a squeeze modulation and a dilation modulation. The hierarchical design of our framework allows to model the trajectory with multi-resolution, then can better capture the motion behavior at various tempos. By progressively combining the global context with the local one, we finally construct a coarse-to-fine hierarchical pedestrian trajectory prediction framework with multi-supervision. Further, we introduce a unified spatial-temporal attention mechanism to adaptively select important information of persons around in both spatial and temporal domains. We show that our attention strategy is intuitive and effective to encode the influence of social interactions. Experimental results on two benchmarks demonstrate the superiority of our proposed scheme.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2021.3065019</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5987-738X</orcidid><orcidid>https://orcid.org/0000-0002-6015-2618</orcidid><orcidid>https://orcid.org/0000-0002-7566-2995</orcidid><orcidid>https://orcid.org/0000-0002-7313-6561</orcidid><orcidid>https://orcid.org/0000-0002-8043-9966</orcidid><orcidid>https://orcid.org/0000-0002-9134-4866</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4697 |
ispartof | IEEE transactions on network science and engineering, 2022-05, Vol.9 (3), p.1006-1019 |
issn | 2327-4697 2334-329X |
language | eng |
recordid | cdi_proquest_journals_2669159214 |
source | IEEE Xplore |
subjects | Algorithms Autonomous navigation Computational modeling Deep learning Feature extraction Human motion Modulation Prediction algorithms Predictions Predictive models social behavior social computing Social factors Social interaction social interactions spatial-temporal attention Task analysis temporal pyramid network Trajectories Trajectory trajectory prediction |
title | Temporal Pyramid Network With Spatial-Temporal Attention for Pedestrian Trajectory Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20Pyramid%20Network%20With%20Spatial-Temporal%20Attention%20for%20Pedestrian%20Trajectory%20Prediction&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Li,%20Yuanman&rft.date=2022-05-01&rft.volume=9&rft.issue=3&rft.spage=1006&rft.epage=1019&rft.pages=1006-1019&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2021.3065019&rft_dat=%3Cproquest_RIE%3E2669159214%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669159214&rft_id=info:pmid/&rft_ieee_id=9373939&rfr_iscdi=true |