Computational Design of Kinesthetic Garments

Kinesthetic garments provide physical feedback on body posture and motion through tailored distributions of reinforced material. Their ability to selectively stiffen a garment's response to specific motions makes them appealing for rehabilitation, sports, robotics, and many other application fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2022-05, Vol.41 (2), p.535-546
Hauptverfasser: Vechev, V., Zarate, J., Thomaszewski, B., Hilliges, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 2
container_start_page 535
container_title Computer graphics forum
container_volume 41
creator Vechev, V.
Zarate, J.
Thomaszewski, B.
Hilliges, O.
description Kinesthetic garments provide physical feedback on body posture and motion through tailored distributions of reinforced material. Their ability to selectively stiffen a garment's response to specific motions makes them appealing for rehabilitation, sports, robotics, and many other application fields. However, finding designs that distribute a given amount of reinforcement material to maximally stiffen the response to specified motions is a challenging problem. In this work, we propose an optimization‐driven approach for automated design of reinforcement patterns for kinesthetic garments. Our main contribution is to cast this design task as an on‐body topology optimization problem. Our method allows designers to explore a continuous range of designs corresponding to various amounts of reinforcement coverage. Our model captures both tight contact and lift‐off separation between cloth and body. We demonstrate our method on a variety of reinforcement design problems for different body sites and motions. Optimal designs lead to a two‐ to threefold improvement in performance in terms of energy density. A set of manufactured designs were consistently rated as providing more resistance than baselines in a comparative user study.
doi_str_mv 10.1111/cgf.14492
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2668624847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2668624847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-a21062f46276e8fa6a5b237b85d479eac8bcb4e1f598b482fa9e52de10cd4fa63</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqGw4A8isUIire36uUSBBkQlNrC2HMcurpoHdiLUv8cQtsxmZnHu6OoAcI3gEqVZmZ1bIkIkPgEZIowXglF5CjKI0s0hpefgIsY9hJBwRjNwV_btMI169H2nD_mDjX7X5b3LX3xn4_hhR2_ySofWdmO8BGdOH6K9-tsL8L55fCufiu1r9VzebwuDJceFxggy7AjDnFnhNNO0xmteC9oQLq02ojY1schRKWoisNPSUtxYBE1DEr5egJv57xD6zynVUPt-CqlfVJgxwTARhCfqdqZM6GMM1qkh-FaHo0JQ_chQSYb6lZHY1cx--YM9_g-qstrMiW97TF96</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668624847</pqid></control><display><type>article</type><title>Computational Design of Kinesthetic Garments</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Vechev, V. ; Zarate, J. ; Thomaszewski, B. ; Hilliges, O.</creator><creatorcontrib>Vechev, V. ; Zarate, J. ; Thomaszewski, B. ; Hilliges, O.</creatorcontrib><description>Kinesthetic garments provide physical feedback on body posture and motion through tailored distributions of reinforced material. Their ability to selectively stiffen a garment's response to specific motions makes them appealing for rehabilitation, sports, robotics, and many other application fields. However, finding designs that distribute a given amount of reinforcement material to maximally stiffen the response to specified motions is a challenging problem. In this work, we propose an optimization‐driven approach for automated design of reinforcement patterns for kinesthetic garments. Our main contribution is to cast this design task as an on‐body topology optimization problem. Our method allows designers to explore a continuous range of designs corresponding to various amounts of reinforcement coverage. Our model captures both tight contact and lift‐off separation between cloth and body. We demonstrate our method on a variety of reinforcement design problems for different body sites and motions. Optimal designs lead to a two‐ to threefold improvement in performance in terms of energy density. A set of manufactured designs were consistently rated as providing more resistance than baselines in a comparative user study.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14492</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Applied computing → Computer‐aided manufacturing ; Automation ; CCS Concepts ; Computing methodologies → Physical simulation ; Design ; Design optimization ; Garments ; Manufacturing engineering ; Rehabilitation ; Reinforcement ; Robotics ; Topology optimization</subject><ispartof>Computer graphics forum, 2022-05, Vol.41 (2), p.535-546</ispartof><rights>2022 The Author(s) Computer Graphics Forum © 2022 The Eurographics Association and John Wiley &amp; Sons Ltd. Published by John Wiley &amp; Sons Ltd.</rights><rights>2022 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-a21062f46276e8fa6a5b237b85d479eac8bcb4e1f598b482fa9e52de10cd4fa63</citedby><cites>FETCH-LOGICAL-c2972-a21062f46276e8fa6a5b237b85d479eac8bcb4e1f598b482fa9e52de10cd4fa63</cites><orcidid>0000-0001-9106-2394 ; 0000-0001-8086-7664 ; 0000-0002-5068-3474 ; 0000-0002-1328-153X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14492$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14492$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Vechev, V.</creatorcontrib><creatorcontrib>Zarate, J.</creatorcontrib><creatorcontrib>Thomaszewski, B.</creatorcontrib><creatorcontrib>Hilliges, O.</creatorcontrib><title>Computational Design of Kinesthetic Garments</title><title>Computer graphics forum</title><description>Kinesthetic garments provide physical feedback on body posture and motion through tailored distributions of reinforced material. Their ability to selectively stiffen a garment's response to specific motions makes them appealing for rehabilitation, sports, robotics, and many other application fields. However, finding designs that distribute a given amount of reinforcement material to maximally stiffen the response to specified motions is a challenging problem. In this work, we propose an optimization‐driven approach for automated design of reinforcement patterns for kinesthetic garments. Our main contribution is to cast this design task as an on‐body topology optimization problem. Our method allows designers to explore a continuous range of designs corresponding to various amounts of reinforcement coverage. Our model captures both tight contact and lift‐off separation between cloth and body. We demonstrate our method on a variety of reinforcement design problems for different body sites and motions. Optimal designs lead to a two‐ to threefold improvement in performance in terms of energy density. A set of manufactured designs were consistently rated as providing more resistance than baselines in a comparative user study.</description><subject>Applied computing → Computer‐aided manufacturing</subject><subject>Automation</subject><subject>CCS Concepts</subject><subject>Computing methodologies → Physical simulation</subject><subject>Design</subject><subject>Design optimization</subject><subject>Garments</subject><subject>Manufacturing engineering</subject><subject>Rehabilitation</subject><subject>Reinforcement</subject><subject>Robotics</subject><subject>Topology optimization</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqGw4A8isUIire36uUSBBkQlNrC2HMcurpoHdiLUv8cQtsxmZnHu6OoAcI3gEqVZmZ1bIkIkPgEZIowXglF5CjKI0s0hpefgIsY9hJBwRjNwV_btMI169H2nD_mDjX7X5b3LX3xn4_hhR2_ySofWdmO8BGdOH6K9-tsL8L55fCufiu1r9VzebwuDJceFxggy7AjDnFnhNNO0xmteC9oQLq02ojY1schRKWoisNPSUtxYBE1DEr5egJv57xD6zynVUPt-CqlfVJgxwTARhCfqdqZM6GMM1qkh-FaHo0JQ_chQSYb6lZHY1cx--YM9_g-qstrMiW97TF96</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Vechev, V.</creator><creator>Zarate, J.</creator><creator>Thomaszewski, B.</creator><creator>Hilliges, O.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9106-2394</orcidid><orcidid>https://orcid.org/0000-0001-8086-7664</orcidid><orcidid>https://orcid.org/0000-0002-5068-3474</orcidid><orcidid>https://orcid.org/0000-0002-1328-153X</orcidid></search><sort><creationdate>202205</creationdate><title>Computational Design of Kinesthetic Garments</title><author>Vechev, V. ; Zarate, J. ; Thomaszewski, B. ; Hilliges, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-a21062f46276e8fa6a5b237b85d479eac8bcb4e1f598b482fa9e52de10cd4fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied computing → Computer‐aided manufacturing</topic><topic>Automation</topic><topic>CCS Concepts</topic><topic>Computing methodologies → Physical simulation</topic><topic>Design</topic><topic>Design optimization</topic><topic>Garments</topic><topic>Manufacturing engineering</topic><topic>Rehabilitation</topic><topic>Reinforcement</topic><topic>Robotics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vechev, V.</creatorcontrib><creatorcontrib>Zarate, J.</creatorcontrib><creatorcontrib>Thomaszewski, B.</creatorcontrib><creatorcontrib>Hilliges, O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vechev, V.</au><au>Zarate, J.</au><au>Thomaszewski, B.</au><au>Hilliges, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Design of Kinesthetic Garments</atitle><jtitle>Computer graphics forum</jtitle><date>2022-05</date><risdate>2022</risdate><volume>41</volume><issue>2</issue><spage>535</spage><epage>546</epage><pages>535-546</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Kinesthetic garments provide physical feedback on body posture and motion through tailored distributions of reinforced material. Their ability to selectively stiffen a garment's response to specific motions makes them appealing for rehabilitation, sports, robotics, and many other application fields. However, finding designs that distribute a given amount of reinforcement material to maximally stiffen the response to specified motions is a challenging problem. In this work, we propose an optimization‐driven approach for automated design of reinforcement patterns for kinesthetic garments. Our main contribution is to cast this design task as an on‐body topology optimization problem. Our method allows designers to explore a continuous range of designs corresponding to various amounts of reinforcement coverage. Our model captures both tight contact and lift‐off separation between cloth and body. We demonstrate our method on a variety of reinforcement design problems for different body sites and motions. Optimal designs lead to a two‐ to threefold improvement in performance in terms of energy density. A set of manufactured designs were consistently rated as providing more resistance than baselines in a comparative user study.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.14492</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9106-2394</orcidid><orcidid>https://orcid.org/0000-0001-8086-7664</orcidid><orcidid>https://orcid.org/0000-0002-5068-3474</orcidid><orcidid>https://orcid.org/0000-0002-1328-153X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2022-05, Vol.41 (2), p.535-546
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_journals_2668624847
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Applied computing → Computer‐aided manufacturing
Automation
CCS Concepts
Computing methodologies → Physical simulation
Design
Design optimization
Garments
Manufacturing engineering
Rehabilitation
Reinforcement
Robotics
Topology optimization
title Computational Design of Kinesthetic Garments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Design%20of%20Kinesthetic%20Garments&rft.jtitle=Computer%20graphics%20forum&rft.au=Vechev,%20V.&rft.date=2022-05&rft.volume=41&rft.issue=2&rft.spage=535&rft.epage=546&rft.pages=535-546&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14492&rft_dat=%3Cproquest_cross%3E2668624847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2668624847&rft_id=info:pmid/&rfr_iscdi=true