Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings
Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation pr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kofler, Florian Ezhov, Ivan Lucas Fidon Horvath, Izabela de la Rosa, Ezequiel LaMaster, John Li, Hongwei Finck, Tom Suprosanna Shit Paetzold, Johannes Bakas, Spyridon Piraud, Marie Kirschke, Jan Vercauteren, Tom Zimmer, Claus Wiestler, Benedikt Menze, Bjoern |
description | Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2668588511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2668588511</sourcerecordid><originalsourceid>FETCH-proquest_journals_26685885113</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcUlNLVAILE3MySypVHAtLsnMTSzJzM-zUnAuSgWy8tIVgkuLivLTE0tSFXzzU1JzihXS8osUPEpzE_Pg-oLAKot5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMzMwtTCwtTQ0Jg4VQA1lj1h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668588511</pqid></control><display><type>article</type><title>Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings</title><source>Free E- Journals</source><creator>Kofler, Florian ; Ezhov, Ivan ; Lucas Fidon ; Horvath, Izabela ; de la Rosa, Ezequiel ; LaMaster, John ; Li, Hongwei ; Finck, Tom ; Suprosanna Shit ; Paetzold, Johannes ; Bakas, Spyridon ; Piraud, Marie ; Kirschke, Jan ; Vercauteren, Tom ; Zimmer, Claus ; Wiestler, Benedikt ; Menze, Bjoern</creator><creatorcontrib>Kofler, Florian ; Ezhov, Ivan ; Lucas Fidon ; Horvath, Izabela ; de la Rosa, Ezequiel ; LaMaster, John ; Li, Hongwei ; Finck, Tom ; Suprosanna Shit ; Paetzold, Johannes ; Bakas, Spyridon ; Piraud, Marie ; Kirschke, Jan ; Vercauteren, Tom ; Zimmer, Claus ; Wiestler, Benedikt ; Menze, Bjoern</creatorcontrib><description>Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Image segmentation ; Ratings ; Training</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kofler, Florian</creatorcontrib><creatorcontrib>Ezhov, Ivan</creatorcontrib><creatorcontrib>Lucas Fidon</creatorcontrib><creatorcontrib>Horvath, Izabela</creatorcontrib><creatorcontrib>de la Rosa, Ezequiel</creatorcontrib><creatorcontrib>LaMaster, John</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Finck, Tom</creatorcontrib><creatorcontrib>Suprosanna Shit</creatorcontrib><creatorcontrib>Paetzold, Johannes</creatorcontrib><creatorcontrib>Bakas, Spyridon</creatorcontrib><creatorcontrib>Piraud, Marie</creatorcontrib><creatorcontrib>Kirschke, Jan</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Zimmer, Claus</creatorcontrib><creatorcontrib>Wiestler, Benedikt</creatorcontrib><creatorcontrib>Menze, Bjoern</creatorcontrib><title>Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings</title><title>arXiv.org</title><description>Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Image segmentation</subject><subject>Ratings</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcUlNLVAILE3MySypVHAtLsnMTSzJzM-zUnAuSgWy8tIVgkuLivLTE0tSFXzzU1JzihXS8osUPEpzE_Pg-oLAKot5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMzMwtTCwtTQ0Jg4VQA1lj1h</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>Kofler, Florian</creator><creator>Ezhov, Ivan</creator><creator>Lucas Fidon</creator><creator>Horvath, Izabela</creator><creator>de la Rosa, Ezequiel</creator><creator>LaMaster, John</creator><creator>Li, Hongwei</creator><creator>Finck, Tom</creator><creator>Suprosanna Shit</creator><creator>Paetzold, Johannes</creator><creator>Bakas, Spyridon</creator><creator>Piraud, Marie</creator><creator>Kirschke, Jan</creator><creator>Vercauteren, Tom</creator><creator>Zimmer, Claus</creator><creator>Wiestler, Benedikt</creator><creator>Menze, Bjoern</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220830</creationdate><title>Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings</title><author>Kofler, Florian ; Ezhov, Ivan ; Lucas Fidon ; Horvath, Izabela ; de la Rosa, Ezequiel ; LaMaster, John ; Li, Hongwei ; Finck, Tom ; Suprosanna Shit ; Paetzold, Johannes ; Bakas, Spyridon ; Piraud, Marie ; Kirschke, Jan ; Vercauteren, Tom ; Zimmer, Claus ; Wiestler, Benedikt ; Menze, Bjoern</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26685885113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Image segmentation</topic><topic>Ratings</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kofler, Florian</creatorcontrib><creatorcontrib>Ezhov, Ivan</creatorcontrib><creatorcontrib>Lucas Fidon</creatorcontrib><creatorcontrib>Horvath, Izabela</creatorcontrib><creatorcontrib>de la Rosa, Ezequiel</creatorcontrib><creatorcontrib>LaMaster, John</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Finck, Tom</creatorcontrib><creatorcontrib>Suprosanna Shit</creatorcontrib><creatorcontrib>Paetzold, Johannes</creatorcontrib><creatorcontrib>Bakas, Spyridon</creatorcontrib><creatorcontrib>Piraud, Marie</creatorcontrib><creatorcontrib>Kirschke, Jan</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Zimmer, Claus</creatorcontrib><creatorcontrib>Wiestler, Benedikt</creatorcontrib><creatorcontrib>Menze, Bjoern</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kofler, Florian</au><au>Ezhov, Ivan</au><au>Lucas Fidon</au><au>Horvath, Izabela</au><au>de la Rosa, Ezequiel</au><au>LaMaster, John</au><au>Li, Hongwei</au><au>Finck, Tom</au><au>Suprosanna Shit</au><au>Paetzold, Johannes</au><au>Bakas, Spyridon</au><au>Piraud, Marie</au><au>Kirschke, Jan</au><au>Vercauteren, Tom</au><au>Zimmer, Claus</au><au>Wiestler, Benedikt</au><au>Menze, Bjoern</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings</atitle><jtitle>arXiv.org</jtitle><date>2022-08-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2668588511 |
source | Free E- Journals |
subjects | Algorithms Annotations Image segmentation Ratings Training |
title | Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Quality%20Estimation:%20Creating%20Surrogate%20Models%20for%20Human%20Quality%20Ratings&rft.jtitle=arXiv.org&rft.au=Kofler,%20Florian&rft.date=2022-08-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2668588511%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2668588511&rft_id=info:pmid/&rfr_iscdi=true |