Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings

Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Kofler, Florian, Ezhov, Ivan, Lucas Fidon, Horvath, Izabela, de la Rosa, Ezequiel, LaMaster, John, Li, Hongwei, Finck, Tom, Suprosanna Shit, Paetzold, Johannes, Bakas, Spyridon, Piraud, Marie, Kirschke, Jan, Vercauteren, Tom, Zimmer, Claus, Wiestler, Benedikt, Menze, Bjoern
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kofler, Florian
Ezhov, Ivan
Lucas Fidon
Horvath, Izabela
de la Rosa, Ezequiel
LaMaster, John
Li, Hongwei
Finck, Tom
Suprosanna Shit
Paetzold, Johannes
Bakas, Spyridon
Piraud, Marie
Kirschke, Jan
Vercauteren, Tom
Zimmer, Claus
Wiestler, Benedikt
Menze, Bjoern
description Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2668588511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2668588511</sourcerecordid><originalsourceid>FETCH-proquest_journals_26685885113</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcUlNLVAILE3MySypVHAtLsnMTSzJzM-zUnAuSgWy8tIVgkuLivLTE0tSFXzzU1JzihXS8osUPEpzE_Pg-oLAKot5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMzMwtTCwtTQ0Jg4VQA1lj1h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668588511</pqid></control><display><type>article</type><title>Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings</title><source>Free E- Journals</source><creator>Kofler, Florian ; Ezhov, Ivan ; Lucas Fidon ; Horvath, Izabela ; de la Rosa, Ezequiel ; LaMaster, John ; Li, Hongwei ; Finck, Tom ; Suprosanna Shit ; Paetzold, Johannes ; Bakas, Spyridon ; Piraud, Marie ; Kirschke, Jan ; Vercauteren, Tom ; Zimmer, Claus ; Wiestler, Benedikt ; Menze, Bjoern</creator><creatorcontrib>Kofler, Florian ; Ezhov, Ivan ; Lucas Fidon ; Horvath, Izabela ; de la Rosa, Ezequiel ; LaMaster, John ; Li, Hongwei ; Finck, Tom ; Suprosanna Shit ; Paetzold, Johannes ; Bakas, Spyridon ; Piraud, Marie ; Kirschke, Jan ; Vercauteren, Tom ; Zimmer, Claus ; Wiestler, Benedikt ; Menze, Bjoern</creatorcontrib><description>Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Image segmentation ; Ratings ; Training</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kofler, Florian</creatorcontrib><creatorcontrib>Ezhov, Ivan</creatorcontrib><creatorcontrib>Lucas Fidon</creatorcontrib><creatorcontrib>Horvath, Izabela</creatorcontrib><creatorcontrib>de la Rosa, Ezequiel</creatorcontrib><creatorcontrib>LaMaster, John</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Finck, Tom</creatorcontrib><creatorcontrib>Suprosanna Shit</creatorcontrib><creatorcontrib>Paetzold, Johannes</creatorcontrib><creatorcontrib>Bakas, Spyridon</creatorcontrib><creatorcontrib>Piraud, Marie</creatorcontrib><creatorcontrib>Kirschke, Jan</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Zimmer, Claus</creatorcontrib><creatorcontrib>Wiestler, Benedikt</creatorcontrib><creatorcontrib>Menze, Bjoern</creatorcontrib><title>Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings</title><title>arXiv.org</title><description>Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Image segmentation</subject><subject>Ratings</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcUlNLVAILE3MySypVHAtLsnMTSzJzM-zUnAuSgWy8tIVgkuLivLTE0tSFXzzU1JzihXS8osUPEpzE_Pg-oLAKot5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMzMwtTCwtTQ0Jg4VQA1lj1h</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>Kofler, Florian</creator><creator>Ezhov, Ivan</creator><creator>Lucas Fidon</creator><creator>Horvath, Izabela</creator><creator>de la Rosa, Ezequiel</creator><creator>LaMaster, John</creator><creator>Li, Hongwei</creator><creator>Finck, Tom</creator><creator>Suprosanna Shit</creator><creator>Paetzold, Johannes</creator><creator>Bakas, Spyridon</creator><creator>Piraud, Marie</creator><creator>Kirschke, Jan</creator><creator>Vercauteren, Tom</creator><creator>Zimmer, Claus</creator><creator>Wiestler, Benedikt</creator><creator>Menze, Bjoern</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220830</creationdate><title>Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings</title><author>Kofler, Florian ; Ezhov, Ivan ; Lucas Fidon ; Horvath, Izabela ; de la Rosa, Ezequiel ; LaMaster, John ; Li, Hongwei ; Finck, Tom ; Suprosanna Shit ; Paetzold, Johannes ; Bakas, Spyridon ; Piraud, Marie ; Kirschke, Jan ; Vercauteren, Tom ; Zimmer, Claus ; Wiestler, Benedikt ; Menze, Bjoern</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26685885113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Image segmentation</topic><topic>Ratings</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kofler, Florian</creatorcontrib><creatorcontrib>Ezhov, Ivan</creatorcontrib><creatorcontrib>Lucas Fidon</creatorcontrib><creatorcontrib>Horvath, Izabela</creatorcontrib><creatorcontrib>de la Rosa, Ezequiel</creatorcontrib><creatorcontrib>LaMaster, John</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Finck, Tom</creatorcontrib><creatorcontrib>Suprosanna Shit</creatorcontrib><creatorcontrib>Paetzold, Johannes</creatorcontrib><creatorcontrib>Bakas, Spyridon</creatorcontrib><creatorcontrib>Piraud, Marie</creatorcontrib><creatorcontrib>Kirschke, Jan</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Zimmer, Claus</creatorcontrib><creatorcontrib>Wiestler, Benedikt</creatorcontrib><creatorcontrib>Menze, Bjoern</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kofler, Florian</au><au>Ezhov, Ivan</au><au>Lucas Fidon</au><au>Horvath, Izabela</au><au>de la Rosa, Ezequiel</au><au>LaMaster, John</au><au>Li, Hongwei</au><au>Finck, Tom</au><au>Suprosanna Shit</au><au>Paetzold, Johannes</au><au>Bakas, Spyridon</au><au>Piraud, Marie</au><au>Kirschke, Jan</au><au>Vercauteren, Tom</au><au>Zimmer, Claus</au><au>Wiestler, Benedikt</au><au>Menze, Bjoern</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings</atitle><jtitle>arXiv.org</jtitle><date>2022-08-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation, following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2668588511
source Free E- Journals
subjects Algorithms
Annotations
Image segmentation
Ratings
Training
title Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Quality%20Estimation:%20Creating%20Surrogate%20Models%20for%20Human%20Quality%20Ratings&rft.jtitle=arXiv.org&rft.au=Kofler,%20Florian&rft.date=2022-08-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2668588511%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2668588511&rft_id=info:pmid/&rfr_iscdi=true