Extraction of Pendulum Model Parameters from Steady-State Slosh Data in Diaphragm Tanks

This study proposes a new experimental approach to extract pendulum model parameters from spacecraft propellant tank slosh data. The novelty of the approach is in the utilization of steady-state triaxial force measurements at the support points of the tank under sinusoidal excitation. This approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spacecraft and rockets 2022-05, Vol.59 (3), p.751-760
Hauptverfasser: Gao, Tengjie, Gutierrez, Hector M., Kirk, Daniel R., Avramov, James, Tam, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 3
container_start_page 751
container_title Journal of spacecraft and rockets
container_volume 59
creator Gao, Tengjie
Gutierrez, Hector M.
Kirk, Daniel R.
Avramov, James
Tam, Walter
description This study proposes a new experimental approach to extract pendulum model parameters from spacecraft propellant tank slosh data. The novelty of the approach is in the utilization of steady-state triaxial force measurements at the support points of the tank under sinusoidal excitation. This approach enables repeatable and accurate determination of pendulum model parameters in contrast to the single-axis force sensing and multiple repetitions averaging techniques associated with the more common decay approach. This approach may be used for tanks with free slosh; however, this study considers a diaphragm tank with three different diaphragm configurations under translational oscillatory lateral excitation. With the aid of a parameter optimization technique prevalently used in machine learning, the proposed methodology identifies the pendulum model parameters based on an adaptive gradient descent on the error surface defined in the parameter space. The proposed approach is validated by comparing experimental measurements against model-predicted behavior, and the numerical procedure is verified against a quasi-Newton method. Moreover, the extracted pendulum model parameters enable prediction of the frequency response functions for both the apparent mass and apparent mass moment as function of excitation frequency, and the methodology enables extraction of higher-order vibration modes.
doi_str_mv 10.2514/1.A35146
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2668443949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2668443949</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-ca3044bd6f107e14a5a78494c356fefb4662e07ff136a3e3a52ff4bf9ca4dfc93</originalsourceid><addsrcrecordid>eNpl0MtKw0AYBeBBFKxV8BEGRHCTOvcky9LWC1QstOJy-JvM2NQkU2cmYN_elgguXJ3NxzlwELqmZMQkFfd0NOaHVCdoQCXniUpzcYoGhDCWCCXJOboIYUsIVZnKB-h99h09FLFyLXYWL0xbdnXX4BdXmhovwENjovEBW-8avIwGyn2yjBANXtYubPAUIuCqxdMKdhsPHw1eQfsZLtGZhTqYq98coreH2WrylMxfH58n43kCLJMxKYATIdalspSkhgqQkGYiFwWXyhq7FkoxQ1JrKVfADQfJrBVrmxcgSlvkfIhu-t6dd1-dCVFvXefbw6RmSmVC8Fwc1V2vCu9C8Mbqna8a8HtNiT7epqnubzvQ255CBfBX9s_9AMljanc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668443949</pqid></control><display><type>article</type><title>Extraction of Pendulum Model Parameters from Steady-State Slosh Data in Diaphragm Tanks</title><source>Alma/SFX Local Collection</source><creator>Gao, Tengjie ; Gutierrez, Hector M. ; Kirk, Daniel R. ; Avramov, James ; Tam, Walter</creator><creatorcontrib>Gao, Tengjie ; Gutierrez, Hector M. ; Kirk, Daniel R. ; Avramov, James ; Tam, Walter</creatorcontrib><description>This study proposes a new experimental approach to extract pendulum model parameters from spacecraft propellant tank slosh data. The novelty of the approach is in the utilization of steady-state triaxial force measurements at the support points of the tank under sinusoidal excitation. This approach enables repeatable and accurate determination of pendulum model parameters in contrast to the single-axis force sensing and multiple repetitions averaging techniques associated with the more common decay approach. This approach may be used for tanks with free slosh; however, this study considers a diaphragm tank with three different diaphragm configurations under translational oscillatory lateral excitation. With the aid of a parameter optimization technique prevalently used in machine learning, the proposed methodology identifies the pendulum model parameters based on an adaptive gradient descent on the error surface defined in the parameter space. The proposed approach is validated by comparing experimental measurements against model-predicted behavior, and the numerical procedure is verified against a quasi-Newton method. Moreover, the extracted pendulum model parameters enable prediction of the frequency response functions for both the apparent mass and apparent mass moment as function of excitation frequency, and the methodology enables extraction of higher-order vibration modes.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.A35146</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Excitation ; Force measurement ; Frequency response functions ; Machine learning ; Mathematical models ; Optimization ; Optimization techniques ; Parameter identification ; Pendulums ; Propellant tanks ; Quasi Newton methods ; Steady state ; Vibration mode</subject><ispartof>Journal of spacecraft and rockets, 2022-05, Vol.59 (3), p.751-760</ispartof><rights>Copyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-6794 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a285t-ca3044bd6f107e14a5a78494c356fefb4662e07ff136a3e3a52ff4bf9ca4dfc93</citedby><cites>FETCH-LOGICAL-a285t-ca3044bd6f107e14a5a78494c356fefb4662e07ff136a3e3a52ff4bf9ca4dfc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Tengjie</creatorcontrib><creatorcontrib>Gutierrez, Hector M.</creatorcontrib><creatorcontrib>Kirk, Daniel R.</creatorcontrib><creatorcontrib>Avramov, James</creatorcontrib><creatorcontrib>Tam, Walter</creatorcontrib><title>Extraction of Pendulum Model Parameters from Steady-State Slosh Data in Diaphragm Tanks</title><title>Journal of spacecraft and rockets</title><description>This study proposes a new experimental approach to extract pendulum model parameters from spacecraft propellant tank slosh data. The novelty of the approach is in the utilization of steady-state triaxial force measurements at the support points of the tank under sinusoidal excitation. This approach enables repeatable and accurate determination of pendulum model parameters in contrast to the single-axis force sensing and multiple repetitions averaging techniques associated with the more common decay approach. This approach may be used for tanks with free slosh; however, this study considers a diaphragm tank with three different diaphragm configurations under translational oscillatory lateral excitation. With the aid of a parameter optimization technique prevalently used in machine learning, the proposed methodology identifies the pendulum model parameters based on an adaptive gradient descent on the error surface defined in the parameter space. The proposed approach is validated by comparing experimental measurements against model-predicted behavior, and the numerical procedure is verified against a quasi-Newton method. Moreover, the extracted pendulum model parameters enable prediction of the frequency response functions for both the apparent mass and apparent mass moment as function of excitation frequency, and the methodology enables extraction of higher-order vibration modes.</description><subject>Excitation</subject><subject>Force measurement</subject><subject>Frequency response functions</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameter identification</subject><subject>Pendulums</subject><subject>Propellant tanks</subject><subject>Quasi Newton methods</subject><subject>Steady state</subject><subject>Vibration mode</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpl0MtKw0AYBeBBFKxV8BEGRHCTOvcky9LWC1QstOJy-JvM2NQkU2cmYN_elgguXJ3NxzlwELqmZMQkFfd0NOaHVCdoQCXniUpzcYoGhDCWCCXJOboIYUsIVZnKB-h99h09FLFyLXYWL0xbdnXX4BdXmhovwENjovEBW-8avIwGyn2yjBANXtYubPAUIuCqxdMKdhsPHw1eQfsZLtGZhTqYq98coreH2WrylMxfH58n43kCLJMxKYATIdalspSkhgqQkGYiFwWXyhq7FkoxQ1JrKVfADQfJrBVrmxcgSlvkfIhu-t6dd1-dCVFvXefbw6RmSmVC8Fwc1V2vCu9C8Mbqna8a8HtNiT7epqnubzvQ255CBfBX9s_9AMljanc</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Gao, Tengjie</creator><creator>Gutierrez, Hector M.</creator><creator>Kirk, Daniel R.</creator><creator>Avramov, James</creator><creator>Tam, Walter</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220501</creationdate><title>Extraction of Pendulum Model Parameters from Steady-State Slosh Data in Diaphragm Tanks</title><author>Gao, Tengjie ; Gutierrez, Hector M. ; Kirk, Daniel R. ; Avramov, James ; Tam, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-ca3044bd6f107e14a5a78494c356fefb4662e07ff136a3e3a52ff4bf9ca4dfc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Excitation</topic><topic>Force measurement</topic><topic>Frequency response functions</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameter identification</topic><topic>Pendulums</topic><topic>Propellant tanks</topic><topic>Quasi Newton methods</topic><topic>Steady state</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Tengjie</creatorcontrib><creatorcontrib>Gutierrez, Hector M.</creatorcontrib><creatorcontrib>Kirk, Daniel R.</creatorcontrib><creatorcontrib>Avramov, James</creatorcontrib><creatorcontrib>Tam, Walter</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Tengjie</au><au>Gutierrez, Hector M.</au><au>Kirk, Daniel R.</au><au>Avramov, James</au><au>Tam, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of Pendulum Model Parameters from Steady-State Slosh Data in Diaphragm Tanks</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>59</volume><issue>3</issue><spage>751</spage><epage>760</epage><pages>751-760</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>This study proposes a new experimental approach to extract pendulum model parameters from spacecraft propellant tank slosh data. The novelty of the approach is in the utilization of steady-state triaxial force measurements at the support points of the tank under sinusoidal excitation. This approach enables repeatable and accurate determination of pendulum model parameters in contrast to the single-axis force sensing and multiple repetitions averaging techniques associated with the more common decay approach. This approach may be used for tanks with free slosh; however, this study considers a diaphragm tank with three different diaphragm configurations under translational oscillatory lateral excitation. With the aid of a parameter optimization technique prevalently used in machine learning, the proposed methodology identifies the pendulum model parameters based on an adaptive gradient descent on the error surface defined in the parameter space. The proposed approach is validated by comparing experimental measurements against model-predicted behavior, and the numerical procedure is verified against a quasi-Newton method. Moreover, the extracted pendulum model parameters enable prediction of the frequency response functions for both the apparent mass and apparent mass moment as function of excitation frequency, and the methodology enables extraction of higher-order vibration modes.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.A35146</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4650
ispartof Journal of spacecraft and rockets, 2022-05, Vol.59 (3), p.751-760
issn 0022-4650
1533-6794
language eng
recordid cdi_proquest_journals_2668443949
source Alma/SFX Local Collection
subjects Excitation
Force measurement
Frequency response functions
Machine learning
Mathematical models
Optimization
Optimization techniques
Parameter identification
Pendulums
Propellant tanks
Quasi Newton methods
Steady state
Vibration mode
title Extraction of Pendulum Model Parameters from Steady-State Slosh Data in Diaphragm Tanks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20Pendulum%20Model%20Parameters%20from%20Steady-State%20Slosh%20Data%20in%20Diaphragm%20Tanks&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Gao,%20Tengjie&rft.date=2022-05-01&rft.volume=59&rft.issue=3&rft.spage=751&rft.epage=760&rft.pages=751-760&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.A35146&rft_dat=%3Cproquest_aiaa_%3E2668443949%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2668443949&rft_id=info:pmid/&rfr_iscdi=true