β in the tails

Do hedge funds hedge? In negative states of the world, often not as much as they should. For several styles, we report larger market betas when market returns are low (i.e., “beta in the tails”). We justify this finding through a combination of negative-mean jumps in the market returns and large mar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2022-03, Vol.227 (1), p.134-150
Hauptverfasser: Bandi, Federico M., Renò, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 1
container_start_page 134
container_title Journal of econometrics
container_volume 227
creator Bandi, Federico M.
Renò, Roberto
description Do hedge funds hedge? In negative states of the world, often not as much as they should. For several styles, we report larger market betas when market returns are low (i.e., “beta in the tails”). We justify this finding through a combination of negative-mean jumps in the market returns and large market jump betas: when moving to the left tail of the market return distribution jump dynamics dominate continuous dynamics and the overall systematic risk of the fund is driven by the higher systematic risk associated with return discontinuities. Methodologically, the separation of continuous and discontinuous dynamics is conducted by exploiting the informational content of the high-order infinitesimal cross-moments of hedge-fund and market returns.
doi_str_mv 10.1016/j.jeconom.2020.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667854204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407620302128</els_id><sourcerecordid>2667854204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-ecab0d1691d17a69d12b01a973e1381cafbb6b25ecabb3191b491fdade5901253</originalsourceid><addsrcrecordid>eNqFj81KxDAUhYMoOI7iEwgDrlvvTZq0WYmIfzDgRtchP7eYMtOOSUfwtXwQn8kOM3tXZ_Odc_gYu0IoEVDddGVHfuiHdcmBQwmqBFBHbIZNzQvVaHnMZiCgKiqo1Sk7y7kDAFk1YsYuf38WsV-MH7QYbVzlc3bS2lWmi0PO2fvjw9v9c7F8fXq5v1sWXtQwFuStg4BKY8DaKh2QO0Cra0EoGvS2dU45LnecE6jRVRrbYANJDcilmLPr_e4mDZ9byqPphm3qp0vDlaobWXGoJkruKZ-GnBO1ZpPi2qZvg2B27qYzB3ezczegzOQ-9W73PZoUviIlk32k3lOIifxowhD_WfgDKQdjWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667854204</pqid></control><display><type>article</type><title>β in the tails</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bandi, Federico M. ; Renò, Roberto</creator><creatorcontrib>Bandi, Federico M. ; Renò, Roberto</creatorcontrib><description>Do hedge funds hedge? In negative states of the world, often not as much as they should. For several styles, we report larger market betas when market returns are low (i.e., “beta in the tails”). We justify this finding through a combination of negative-mean jumps in the market returns and large market jump betas: when moving to the left tail of the market return distribution jump dynamics dominate continuous dynamics and the overall systematic risk of the fund is driven by the higher systematic risk associated with return discontinuities. Methodologically, the separation of continuous and discontinuous dynamics is conducted by exploiting the informational content of the high-order infinitesimal cross-moments of hedge-fund and market returns.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2020.06.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Beta ; Diffusive risk ; Econometrics ; Hedge funds ; Jump risk ; Mathematical models ; Risk assessment</subject><ispartof>Journal of econometrics, 2022-03, Vol.227 (1), p.134-150</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-ecab0d1691d17a69d12b01a973e1381cafbb6b25ecabb3191b491fdade5901253</citedby><cites>FETCH-LOGICAL-c370t-ecab0d1691d17a69d12b01a973e1381cafbb6b25ecabb3191b491fdade5901253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2020.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Bandi, Federico M.</creatorcontrib><creatorcontrib>Renò, Roberto</creatorcontrib><title>β in the tails</title><title>Journal of econometrics</title><description>Do hedge funds hedge? In negative states of the world, often not as much as they should. For several styles, we report larger market betas when market returns are low (i.e., “beta in the tails”). We justify this finding through a combination of negative-mean jumps in the market returns and large market jump betas: when moving to the left tail of the market return distribution jump dynamics dominate continuous dynamics and the overall systematic risk of the fund is driven by the higher systematic risk associated with return discontinuities. Methodologically, the separation of continuous and discontinuous dynamics is conducted by exploiting the informational content of the high-order infinitesimal cross-moments of hedge-fund and market returns.</description><subject>Beta</subject><subject>Diffusive risk</subject><subject>Econometrics</subject><subject>Hedge funds</subject><subject>Jump risk</subject><subject>Mathematical models</subject><subject>Risk assessment</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFj81KxDAUhYMoOI7iEwgDrlvvTZq0WYmIfzDgRtchP7eYMtOOSUfwtXwQn8kOM3tXZ_Odc_gYu0IoEVDddGVHfuiHdcmBQwmqBFBHbIZNzQvVaHnMZiCgKiqo1Sk7y7kDAFk1YsYuf38WsV-MH7QYbVzlc3bS2lWmi0PO2fvjw9v9c7F8fXq5v1sWXtQwFuStg4BKY8DaKh2QO0Cra0EoGvS2dU45LnecE6jRVRrbYANJDcilmLPr_e4mDZ9byqPphm3qp0vDlaobWXGoJkruKZ-GnBO1ZpPi2qZvg2B27qYzB3ezczegzOQ-9W73PZoUviIlk32k3lOIifxowhD_WfgDKQdjWg</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Bandi, Federico M.</creator><creator>Renò, Roberto</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202203</creationdate><title>β in the tails</title><author>Bandi, Federico M. ; Renò, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-ecab0d1691d17a69d12b01a973e1381cafbb6b25ecabb3191b491fdade5901253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beta</topic><topic>Diffusive risk</topic><topic>Econometrics</topic><topic>Hedge funds</topic><topic>Jump risk</topic><topic>Mathematical models</topic><topic>Risk assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandi, Federico M.</creatorcontrib><creatorcontrib>Renò, Roberto</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandi, Federico M.</au><au>Renò, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β in the tails</atitle><jtitle>Journal of econometrics</jtitle><date>2022-03</date><risdate>2022</risdate><volume>227</volume><issue>1</issue><spage>134</spage><epage>150</epage><pages>134-150</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>Do hedge funds hedge? In negative states of the world, often not as much as they should. For several styles, we report larger market betas when market returns are low (i.e., “beta in the tails”). We justify this finding through a combination of negative-mean jumps in the market returns and large market jump betas: when moving to the left tail of the market return distribution jump dynamics dominate continuous dynamics and the overall systematic risk of the fund is driven by the higher systematic risk associated with return discontinuities. Methodologically, the separation of continuous and discontinuous dynamics is conducted by exploiting the informational content of the high-order infinitesimal cross-moments of hedge-fund and market returns.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2020.06.006</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2022-03, Vol.227 (1), p.134-150
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2667854204
source Elsevier ScienceDirect Journals Complete
subjects Beta
Diffusive risk
Econometrics
Hedge funds
Jump risk
Mathematical models
Risk assessment
title β in the tails
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2%20in%20the%20tails&rft.jtitle=Journal%20of%20econometrics&rft.au=Bandi,%20Federico%20M.&rft.date=2022-03&rft.volume=227&rft.issue=1&rft.spage=134&rft.epage=150&rft.pages=134-150&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2020.06.006&rft_dat=%3Cproquest_cross%3E2667854204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667854204&rft_id=info:pmid/&rft_els_id=S0304407620302128&rfr_iscdi=true