β in the tails
Do hedge funds hedge? In negative states of the world, often not as much as they should. For several styles, we report larger market betas when market returns are low (i.e., “beta in the tails”). We justify this finding through a combination of negative-mean jumps in the market returns and large mar...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2022-03, Vol.227 (1), p.134-150 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | 1 |
container_start_page | 134 |
container_title | Journal of econometrics |
container_volume | 227 |
creator | Bandi, Federico M. Renò, Roberto |
description | Do hedge funds hedge? In negative states of the world, often not as much as they should. For several styles, we report larger market betas when market returns are low (i.e., “beta in the tails”). We justify this finding through a combination of negative-mean jumps in the market returns and large market jump betas: when moving to the left tail of the market return distribution jump dynamics dominate continuous dynamics and the overall systematic risk of the fund is driven by the higher systematic risk associated with return discontinuities. Methodologically, the separation of continuous and discontinuous dynamics is conducted by exploiting the informational content of the high-order infinitesimal cross-moments of hedge-fund and market returns. |
doi_str_mv | 10.1016/j.jeconom.2020.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667854204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407620302128</els_id><sourcerecordid>2667854204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-ecab0d1691d17a69d12b01a973e1381cafbb6b25ecabb3191b491fdade5901253</originalsourceid><addsrcrecordid>eNqFj81KxDAUhYMoOI7iEwgDrlvvTZq0WYmIfzDgRtchP7eYMtOOSUfwtXwQn8kOM3tXZ_Odc_gYu0IoEVDddGVHfuiHdcmBQwmqBFBHbIZNzQvVaHnMZiCgKiqo1Sk7y7kDAFk1YsYuf38WsV-MH7QYbVzlc3bS2lWmi0PO2fvjw9v9c7F8fXq5v1sWXtQwFuStg4BKY8DaKh2QO0Cra0EoGvS2dU45LnecE6jRVRrbYANJDcilmLPr_e4mDZ9byqPphm3qp0vDlaobWXGoJkruKZ-GnBO1ZpPi2qZvg2B27qYzB3ezczegzOQ-9W73PZoUviIlk32k3lOIifxowhD_WfgDKQdjWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667854204</pqid></control><display><type>article</type><title>β in the tails</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bandi, Federico M. ; Renò, Roberto</creator><creatorcontrib>Bandi, Federico M. ; Renò, Roberto</creatorcontrib><description>Do hedge funds hedge? In negative states of the world, often not as much as they should. For several styles, we report larger market betas when market returns are low (i.e., “beta in the tails”). We justify this finding through a combination of negative-mean jumps in the market returns and large market jump betas: when moving to the left tail of the market return distribution jump dynamics dominate continuous dynamics and the overall systematic risk of the fund is driven by the higher systematic risk associated with return discontinuities. Methodologically, the separation of continuous and discontinuous dynamics is conducted by exploiting the informational content of the high-order infinitesimal cross-moments of hedge-fund and market returns.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2020.06.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Beta ; Diffusive risk ; Econometrics ; Hedge funds ; Jump risk ; Mathematical models ; Risk assessment</subject><ispartof>Journal of econometrics, 2022-03, Vol.227 (1), p.134-150</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-ecab0d1691d17a69d12b01a973e1381cafbb6b25ecabb3191b491fdade5901253</citedby><cites>FETCH-LOGICAL-c370t-ecab0d1691d17a69d12b01a973e1381cafbb6b25ecabb3191b491fdade5901253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2020.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Bandi, Federico M.</creatorcontrib><creatorcontrib>Renò, Roberto</creatorcontrib><title>β in the tails</title><title>Journal of econometrics</title><description>Do hedge funds hedge? In negative states of the world, often not as much as they should. For several styles, we report larger market betas when market returns are low (i.e., “beta in the tails”). We justify this finding through a combination of negative-mean jumps in the market returns and large market jump betas: when moving to the left tail of the market return distribution jump dynamics dominate continuous dynamics and the overall systematic risk of the fund is driven by the higher systematic risk associated with return discontinuities. Methodologically, the separation of continuous and discontinuous dynamics is conducted by exploiting the informational content of the high-order infinitesimal cross-moments of hedge-fund and market returns.</description><subject>Beta</subject><subject>Diffusive risk</subject><subject>Econometrics</subject><subject>Hedge funds</subject><subject>Jump risk</subject><subject>Mathematical models</subject><subject>Risk assessment</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFj81KxDAUhYMoOI7iEwgDrlvvTZq0WYmIfzDgRtchP7eYMtOOSUfwtXwQn8kOM3tXZ_Odc_gYu0IoEVDddGVHfuiHdcmBQwmqBFBHbIZNzQvVaHnMZiCgKiqo1Sk7y7kDAFk1YsYuf38WsV-MH7QYbVzlc3bS2lWmi0PO2fvjw9v9c7F8fXq5v1sWXtQwFuStg4BKY8DaKh2QO0Cra0EoGvS2dU45LnecE6jRVRrbYANJDcilmLPr_e4mDZ9byqPphm3qp0vDlaobWXGoJkruKZ-GnBO1ZpPi2qZvg2B27qYzB3ezczegzOQ-9W73PZoUviIlk32k3lOIifxowhD_WfgDKQdjWg</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Bandi, Federico M.</creator><creator>Renò, Roberto</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202203</creationdate><title>β in the tails</title><author>Bandi, Federico M. ; Renò, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-ecab0d1691d17a69d12b01a973e1381cafbb6b25ecabb3191b491fdade5901253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beta</topic><topic>Diffusive risk</topic><topic>Econometrics</topic><topic>Hedge funds</topic><topic>Jump risk</topic><topic>Mathematical models</topic><topic>Risk assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandi, Federico M.</creatorcontrib><creatorcontrib>Renò, Roberto</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandi, Federico M.</au><au>Renò, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β in the tails</atitle><jtitle>Journal of econometrics</jtitle><date>2022-03</date><risdate>2022</risdate><volume>227</volume><issue>1</issue><spage>134</spage><epage>150</epage><pages>134-150</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>Do hedge funds hedge? In negative states of the world, often not as much as they should. For several styles, we report larger market betas when market returns are low (i.e., “beta in the tails”). We justify this finding through a combination of negative-mean jumps in the market returns and large market jump betas: when moving to the left tail of the market return distribution jump dynamics dominate continuous dynamics and the overall systematic risk of the fund is driven by the higher systematic risk associated with return discontinuities. Methodologically, the separation of continuous and discontinuous dynamics is conducted by exploiting the informational content of the high-order infinitesimal cross-moments of hedge-fund and market returns.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2020.06.006</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2022-03, Vol.227 (1), p.134-150 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_2667854204 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Beta Diffusive risk Econometrics Hedge funds Jump risk Mathematical models Risk assessment |
title | β in the tails |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2%20in%20the%20tails&rft.jtitle=Journal%20of%20econometrics&rft.au=Bandi,%20Federico%20M.&rft.date=2022-03&rft.volume=227&rft.issue=1&rft.spage=134&rft.epage=150&rft.pages=134-150&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2020.06.006&rft_dat=%3Cproquest_cross%3E2667854204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667854204&rft_id=info:pmid/&rft_els_id=S0304407620302128&rfr_iscdi=true |