Fluorinated acrylic monomer modified core-shell polyacrylate latex particles: Preparation, properties and characterizations
The core-shell acrylic emulsion was synthesized by a semicontinuous seeded emulsion polymerization with acrylate monomers as the main materials and octafluoropentyl methacrylate (OFPMA) as modified monomers. The influences of OFPMA on the hydrophobicity, thermal stability and mechanical properties o...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2022-04, Vol.247, p.124783, Article 124783 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 124783 |
container_title | Polymer (Guilford) |
container_volume | 247 |
creator | Zhang, Fuhao Jing, Cheng Yan, Zhangyin Ge, Shengsong Liu, Ping Maganti, Srihari Xu, Ben Bin Mahmoud, Khaled H. El-Bahy, Zeinhom M. Huang, Mina Guo, Zhanhu |
description | The core-shell acrylic emulsion was synthesized by a semicontinuous seeded emulsion polymerization with acrylate monomers as the main materials and octafluoropentyl methacrylate (OFPMA) as modified monomers. The influences of OFPMA on the hydrophobicity, thermal stability and mechanical properties of acrylic latex film were investigated. Fourier transform infrared spectroscopy (FTIR) analysis and X-ray photoelectron spectroscopy (XPS) indicated that the OFPMA was successfully incorporated into the acrylic resin chain. Transmission electron microscope (TEM) image showed a core-shell structure of the emulsion particles. The addition of OFPMA reduced the water absorption ratio (3.2 wt%) of the latex film and improved its water resistance. Contact angle of coating film surface increased from 80.7° to 90.7°. Moreover, TGA curves showed that the addition of OFPMA increased the initial decomposition temperature of the polymer from 355 to 370 °C. Additionally, with the addition of OFPMA, the tensile strength of modified polymers was also improved to 7.77 MPa compared to pure acrylic resin. The application of the core-shell structure can reduce the amount of fluorine-containing acrylic monomers and environmental pollution, and improve economic benefits. This study provides a new kind of environmentally friendly waterborne acrylic resin and a simple method for optimizing the performance of waterborne resins.
[Display omitted]
•The core-shell acrylic emulsion modified by octafluoropentyl methacrylate was synthesized via a semicontinuous seeded emulsion polymerization.•The core-shell acrylic emulsion exhibited excellent water resistance and thermal stability.•The core-shell structure reduces the amount of fluorine-containing acrylic monomers. |
doi_str_mv | 10.1016/j.polymer.2022.124783 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667853852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386122002701</els_id><sourcerecordid>2667853852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-c2feccfc191a60b6d5e5ff846dca514492ee66deb31fe5bcb37972eead40c6133</originalsourceid><addsrcrecordid>eNqFUEtLxDAQDqLguvoThIJXW_No09aLyOKqsKAHPYd0OmVTuk1NuuLqnzdr9-5lhpnvMclHyCWjCaNM3rTJYLvdBl3CKecJ42leiCMyY0UuYs5LdkxmlAoei0KyU3LmfUsp5RlPZ-Rn2W2tM70esY40uF1nINrY3ga70GvTmACAdRj7NXZdtD_1xwuKaF--okG70UCH_jZ6dRgmPRrbX0eDswMGCH2k-2CyDgiM6Mz3H8Gfk5NGdx4vDn1O3pcPb4unePXy-Ly4X8UginSMgTcI0AArmZa0knWGWdMUqaxBZyxNS44oZY2VYA1mFVQiL_Ow03VKQTIh5uRq8g0P-tiiH1Vrt64PJxWXMi8yUWQ8sLKJBc5677BRgzMb7XaKUbXPWbXqkLPa56ymnIPubtJh-MKnCagHgz1gbRzCqGpr_nH4BW_qjf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667853852</pqid></control><display><type>article</type><title>Fluorinated acrylic monomer modified core-shell polyacrylate latex particles: Preparation, properties and characterizations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Fuhao ; Jing, Cheng ; Yan, Zhangyin ; Ge, Shengsong ; Liu, Ping ; Maganti, Srihari ; Xu, Ben Bin ; Mahmoud, Khaled H. ; El-Bahy, Zeinhom M. ; Huang, Mina ; Guo, Zhanhu</creator><creatorcontrib>Zhang, Fuhao ; Jing, Cheng ; Yan, Zhangyin ; Ge, Shengsong ; Liu, Ping ; Maganti, Srihari ; Xu, Ben Bin ; Mahmoud, Khaled H. ; El-Bahy, Zeinhom M. ; Huang, Mina ; Guo, Zhanhu</creatorcontrib><description>The core-shell acrylic emulsion was synthesized by a semicontinuous seeded emulsion polymerization with acrylate monomers as the main materials and octafluoropentyl methacrylate (OFPMA) as modified monomers. The influences of OFPMA on the hydrophobicity, thermal stability and mechanical properties of acrylic latex film were investigated. Fourier transform infrared spectroscopy (FTIR) analysis and X-ray photoelectron spectroscopy (XPS) indicated that the OFPMA was successfully incorporated into the acrylic resin chain. Transmission electron microscope (TEM) image showed a core-shell structure of the emulsion particles. The addition of OFPMA reduced the water absorption ratio (3.2 wt%) of the latex film and improved its water resistance. Contact angle of coating film surface increased from 80.7° to 90.7°. Moreover, TGA curves showed that the addition of OFPMA increased the initial decomposition temperature of the polymer from 355 to 370 °C. Additionally, with the addition of OFPMA, the tensile strength of modified polymers was also improved to 7.77 MPa compared to pure acrylic resin. The application of the core-shell structure can reduce the amount of fluorine-containing acrylic monomers and environmental pollution, and improve economic benefits. This study provides a new kind of environmentally friendly waterborne acrylic resin and a simple method for optimizing the performance of waterborne resins.
[Display omitted]
•The core-shell acrylic emulsion modified by octafluoropentyl methacrylate was synthesized via a semicontinuous seeded emulsion polymerization.•The core-shell acrylic emulsion exhibited excellent water resistance and thermal stability.•The core-shell structure reduces the amount of fluorine-containing acrylic monomers.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2022.124783</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acrylic resins ; Acrylics ; Addition polymerization ; Contact angle ; Core-shell structure ; Emulsion polymerization ; Fluorine ; Fourier analysis ; Fourier transforms ; Hydrophobicity ; Image transmission ; Infrared analysis ; Infrared spectroscopy ; Latex ; Mechanical properties ; Modification ; Monomers ; Octafluoropentyl methacrylate ; Photoelectron spectroscopy ; Photoelectrons ; Polyacrylate ; Polymers ; Resins ; Spectrum analysis ; Tensile strength ; Thermal stability ; Water absorption ; Water resistance ; Waterborne acrylic resin ; X ray photoelectron spectroscopy</subject><ispartof>Polymer (Guilford), 2022-04, Vol.247, p.124783, Article 124783</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 28, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-c2feccfc191a60b6d5e5ff846dca514492ee66deb31fe5bcb37972eead40c6133</citedby><cites>FETCH-LOGICAL-c384t-c2feccfc191a60b6d5e5ff846dca514492ee66deb31fe5bcb37972eead40c6133</cites><orcidid>0000-0002-5632-2370 ; 0000-0003-0134-0210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2022.124783$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhang, Fuhao</creatorcontrib><creatorcontrib>Jing, Cheng</creatorcontrib><creatorcontrib>Yan, Zhangyin</creatorcontrib><creatorcontrib>Ge, Shengsong</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Maganti, Srihari</creatorcontrib><creatorcontrib>Xu, Ben Bin</creatorcontrib><creatorcontrib>Mahmoud, Khaled H.</creatorcontrib><creatorcontrib>El-Bahy, Zeinhom M.</creatorcontrib><creatorcontrib>Huang, Mina</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><title>Fluorinated acrylic monomer modified core-shell polyacrylate latex particles: Preparation, properties and characterizations</title><title>Polymer (Guilford)</title><description>The core-shell acrylic emulsion was synthesized by a semicontinuous seeded emulsion polymerization with acrylate monomers as the main materials and octafluoropentyl methacrylate (OFPMA) as modified monomers. The influences of OFPMA on the hydrophobicity, thermal stability and mechanical properties of acrylic latex film were investigated. Fourier transform infrared spectroscopy (FTIR) analysis and X-ray photoelectron spectroscopy (XPS) indicated that the OFPMA was successfully incorporated into the acrylic resin chain. Transmission electron microscope (TEM) image showed a core-shell structure of the emulsion particles. The addition of OFPMA reduced the water absorption ratio (3.2 wt%) of the latex film and improved its water resistance. Contact angle of coating film surface increased from 80.7° to 90.7°. Moreover, TGA curves showed that the addition of OFPMA increased the initial decomposition temperature of the polymer from 355 to 370 °C. Additionally, with the addition of OFPMA, the tensile strength of modified polymers was also improved to 7.77 MPa compared to pure acrylic resin. The application of the core-shell structure can reduce the amount of fluorine-containing acrylic monomers and environmental pollution, and improve economic benefits. This study provides a new kind of environmentally friendly waterborne acrylic resin and a simple method for optimizing the performance of waterborne resins.
[Display omitted]
•The core-shell acrylic emulsion modified by octafluoropentyl methacrylate was synthesized via a semicontinuous seeded emulsion polymerization.•The core-shell acrylic emulsion exhibited excellent water resistance and thermal stability.•The core-shell structure reduces the amount of fluorine-containing acrylic monomers.</description><subject>Acrylic resins</subject><subject>Acrylics</subject><subject>Addition polymerization</subject><subject>Contact angle</subject><subject>Core-shell structure</subject><subject>Emulsion polymerization</subject><subject>Fluorine</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Hydrophobicity</subject><subject>Image transmission</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Latex</subject><subject>Mechanical properties</subject><subject>Modification</subject><subject>Monomers</subject><subject>Octafluoropentyl methacrylate</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Polyacrylate</subject><subject>Polymers</subject><subject>Resins</subject><subject>Spectrum analysis</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>Water absorption</subject><subject>Water resistance</subject><subject>Waterborne acrylic resin</subject><subject>X ray photoelectron spectroscopy</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLxDAQDqLguvoThIJXW_No09aLyOKqsKAHPYd0OmVTuk1NuuLqnzdr9-5lhpnvMclHyCWjCaNM3rTJYLvdBl3CKecJ42leiCMyY0UuYs5LdkxmlAoei0KyU3LmfUsp5RlPZ-Rn2W2tM70esY40uF1nINrY3ga70GvTmACAdRj7NXZdtD_1xwuKaF--okG70UCH_jZ6dRgmPRrbX0eDswMGCH2k-2CyDgiM6Mz3H8Gfk5NGdx4vDn1O3pcPb4unePXy-Ly4X8UginSMgTcI0AArmZa0knWGWdMUqaxBZyxNS44oZY2VYA1mFVQiL_Ow03VKQTIh5uRq8g0P-tiiH1Vrt64PJxWXMi8yUWQ8sLKJBc5677BRgzMb7XaKUbXPWbXqkLPa56ymnIPubtJh-MKnCagHgz1gbRzCqGpr_nH4BW_qjf0</recordid><startdate>20220428</startdate><enddate>20220428</enddate><creator>Zhang, Fuhao</creator><creator>Jing, Cheng</creator><creator>Yan, Zhangyin</creator><creator>Ge, Shengsong</creator><creator>Liu, Ping</creator><creator>Maganti, Srihari</creator><creator>Xu, Ben Bin</creator><creator>Mahmoud, Khaled H.</creator><creator>El-Bahy, Zeinhom M.</creator><creator>Huang, Mina</creator><creator>Guo, Zhanhu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5632-2370</orcidid><orcidid>https://orcid.org/0000-0003-0134-0210</orcidid></search><sort><creationdate>20220428</creationdate><title>Fluorinated acrylic monomer modified core-shell polyacrylate latex particles: Preparation, properties and characterizations</title><author>Zhang, Fuhao ; Jing, Cheng ; Yan, Zhangyin ; Ge, Shengsong ; Liu, Ping ; Maganti, Srihari ; Xu, Ben Bin ; Mahmoud, Khaled H. ; El-Bahy, Zeinhom M. ; Huang, Mina ; Guo, Zhanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-c2feccfc191a60b6d5e5ff846dca514492ee66deb31fe5bcb37972eead40c6133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acrylic resins</topic><topic>Acrylics</topic><topic>Addition polymerization</topic><topic>Contact angle</topic><topic>Core-shell structure</topic><topic>Emulsion polymerization</topic><topic>Fluorine</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Hydrophobicity</topic><topic>Image transmission</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Latex</topic><topic>Mechanical properties</topic><topic>Modification</topic><topic>Monomers</topic><topic>Octafluoropentyl methacrylate</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Polyacrylate</topic><topic>Polymers</topic><topic>Resins</topic><topic>Spectrum analysis</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>Water absorption</topic><topic>Water resistance</topic><topic>Waterborne acrylic resin</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fuhao</creatorcontrib><creatorcontrib>Jing, Cheng</creatorcontrib><creatorcontrib>Yan, Zhangyin</creatorcontrib><creatorcontrib>Ge, Shengsong</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Maganti, Srihari</creatorcontrib><creatorcontrib>Xu, Ben Bin</creatorcontrib><creatorcontrib>Mahmoud, Khaled H.</creatorcontrib><creatorcontrib>El-Bahy, Zeinhom M.</creatorcontrib><creatorcontrib>Huang, Mina</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fuhao</au><au>Jing, Cheng</au><au>Yan, Zhangyin</au><au>Ge, Shengsong</au><au>Liu, Ping</au><au>Maganti, Srihari</au><au>Xu, Ben Bin</au><au>Mahmoud, Khaled H.</au><au>El-Bahy, Zeinhom M.</au><au>Huang, Mina</au><au>Guo, Zhanhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorinated acrylic monomer modified core-shell polyacrylate latex particles: Preparation, properties and characterizations</atitle><jtitle>Polymer (Guilford)</jtitle><date>2022-04-28</date><risdate>2022</risdate><volume>247</volume><spage>124783</spage><pages>124783-</pages><artnum>124783</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>The core-shell acrylic emulsion was synthesized by a semicontinuous seeded emulsion polymerization with acrylate monomers as the main materials and octafluoropentyl methacrylate (OFPMA) as modified monomers. The influences of OFPMA on the hydrophobicity, thermal stability and mechanical properties of acrylic latex film were investigated. Fourier transform infrared spectroscopy (FTIR) analysis and X-ray photoelectron spectroscopy (XPS) indicated that the OFPMA was successfully incorporated into the acrylic resin chain. Transmission electron microscope (TEM) image showed a core-shell structure of the emulsion particles. The addition of OFPMA reduced the water absorption ratio (3.2 wt%) of the latex film and improved its water resistance. Contact angle of coating film surface increased from 80.7° to 90.7°. Moreover, TGA curves showed that the addition of OFPMA increased the initial decomposition temperature of the polymer from 355 to 370 °C. Additionally, with the addition of OFPMA, the tensile strength of modified polymers was also improved to 7.77 MPa compared to pure acrylic resin. The application of the core-shell structure can reduce the amount of fluorine-containing acrylic monomers and environmental pollution, and improve economic benefits. This study provides a new kind of environmentally friendly waterborne acrylic resin and a simple method for optimizing the performance of waterborne resins.
[Display omitted]
•The core-shell acrylic emulsion modified by octafluoropentyl methacrylate was synthesized via a semicontinuous seeded emulsion polymerization.•The core-shell acrylic emulsion exhibited excellent water resistance and thermal stability.•The core-shell structure reduces the amount of fluorine-containing acrylic monomers.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2022.124783</doi><orcidid>https://orcid.org/0000-0002-5632-2370</orcidid><orcidid>https://orcid.org/0000-0003-0134-0210</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2022-04, Vol.247, p.124783, Article 124783 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2667853852 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Acrylic resins Acrylics Addition polymerization Contact angle Core-shell structure Emulsion polymerization Fluorine Fourier analysis Fourier transforms Hydrophobicity Image transmission Infrared analysis Infrared spectroscopy Latex Mechanical properties Modification Monomers Octafluoropentyl methacrylate Photoelectron spectroscopy Photoelectrons Polyacrylate Polymers Resins Spectrum analysis Tensile strength Thermal stability Water absorption Water resistance Waterborne acrylic resin X ray photoelectron spectroscopy |
title | Fluorinated acrylic monomer modified core-shell polyacrylate latex particles: Preparation, properties and characterizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorinated%20acrylic%20monomer%20modified%20core-shell%20polyacrylate%20latex%20particles:%20Preparation,%20properties%20and%20characterizations&rft.jtitle=Polymer%20(Guilford)&rft.au=Zhang,%20Fuhao&rft.date=2022-04-28&rft.volume=247&rft.spage=124783&rft.pages=124783-&rft.artnum=124783&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2022.124783&rft_dat=%3Cproquest_cross%3E2667853852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667853852&rft_id=info:pmid/&rft_els_id=S0032386122002701&rfr_iscdi=true |