A novel 3D printing method for cell alignment and differentiation
The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for ce...
Gespeichert in:
Veröffentlicht in: | International journal of bioprinting 2024-08, Vol.1 (1), p.57 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | International journal of bioprinting |
container_volume | 1 |
creator | Bhuthalingam, Ramya Lim, Pei Qi A Irvine, Scott Agrawal, Animesh Mhaisalkar, Priyadarshini S An, Jia Chua, Chee Kai Venkatraman, Subbu |
description | The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for cell orientation and then bioprint cells directly onto them. Topographic guidance features generate cues that influence adhered cell morphology and phenotype. The robotic dispensing system was modified to include a sharpened stylus that etched on a polystyrene surface. The same computer-aided design (CAD) software was used for both precision control of etching and bioink deposition. Various etched groove patterns such as linear, concentric circles, and sinusoidal wave patterns were possible. Fibroblasts and mesenchymal stem cells (MSC) were able to sense the grooves, as shown by their elongation and orientation in the direction of the features. The orientated MSCs displayed indications of lineage commitment as detected by fluorescence-activated cell sorting (FACS) analysis. A 2% gelatin bioink was then used to dispense cells onto the etched features using identical, programmed co-ordinates. The bioink allows the cells to contact sense the pattern while containing their deposition within the printed pattern. |
doi_str_mv | 10.18063/IJB.2015.01.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667827505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667827505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-1354c8030964853c7c58017dff2b47b8bea4fc93b8d4e4984e1d0de297c3f1743</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EElXpnaMlzgnrR2LnWAqUokpc4GwlfpRUiV3sFIl_j6E9zc5otKv9ELolUBIJNbvfvD6UFEhVAikB5AWaUU55IQHo5XkWgrJrtEhpDzmVBAiTM7RcYh--7YDZIz7E3k-93-HRTp_BYBci1nYYcDv0Oz9aP-HWG2x652zMrm-nPvgbdOXaIdnFWefo4_npffVSbN_Wm9VyW2hO66kgrOJaAoOm5rJiWuhKAhHGOdpx0cnOttzphnXScMsbyS0xYCxthGaOCM7m6O609xDD19GmSe3DMfp8UtG6FpKKCqrcglNLx5BStE7lr8Y2_igC6p-VyqzUHysFRGVW7Bfoglpd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667827505</pqid></control><display><type>article</type><title>A novel 3D printing method for cell alignment and differentiation</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bhuthalingam, Ramya ; Lim, Pei Qi ; A Irvine, Scott ; Agrawal, Animesh ; Mhaisalkar, Priyadarshini S ; An, Jia ; Chua, Chee Kai ; Venkatraman, Subbu</creator><creatorcontrib>Bhuthalingam, Ramya ; Lim, Pei Qi ; A Irvine, Scott ; Agrawal, Animesh ; Mhaisalkar, Priyadarshini S ; An, Jia ; Chua, Chee Kai ; Venkatraman, Subbu</creatorcontrib><description>The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for cell orientation and then bioprint cells directly onto them. Topographic guidance features generate cues that influence adhered cell morphology and phenotype. The robotic dispensing system was modified to include a sharpened stylus that etched on a polystyrene surface. The same computer-aided design (CAD) software was used for both precision control of etching and bioink deposition. Various etched groove patterns such as linear, concentric circles, and sinusoidal wave patterns were possible. Fibroblasts and mesenchymal stem cells (MSC) were able to sense the grooves, as shown by their elongation and orientation in the direction of the features. The orientated MSCs displayed indications of lineage commitment as detected by fluorescence-activated cell sorting (FACS) analysis. A 2% gelatin bioink was then used to dispense cells onto the etched features using identical, programmed co-ordinates. The bioink allows the cells to contact sense the pattern while containing their deposition within the printed pattern.</description><identifier>ISSN: 2424-7723</identifier><identifier>EISSN: 2424-8002</identifier><identifier>DOI: 10.18063/IJB.2015.01.008</identifier><language>eng</language><publisher>Singapore: AccScience Publishing</publisher><subject>Automation ; Bioengineering ; Biological materials ; CAD ; Cell differentiation ; Cell morphology ; Computer aided design ; Cytology ; Deposition ; Dispensing ; Elongation ; Etching ; Fibroblasts ; Flow cytometry ; Gelatin ; Grooves ; Mesenchyme ; Morphology ; Orientation ; Phenotypes ; Polystyrene ; Polystyrene resins ; Robotics ; Sine waves ; Software ; Stem cells ; Styli ; Three dimensional printing ; Topography</subject><ispartof>International journal of bioprinting, 2024-08, Vol.1 (1), p.57</ispartof><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-1354c8030964853c7c58017dff2b47b8bea4fc93b8d4e4984e1d0de297c3f1743</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bhuthalingam, Ramya</creatorcontrib><creatorcontrib>Lim, Pei Qi</creatorcontrib><creatorcontrib>A Irvine, Scott</creatorcontrib><creatorcontrib>Agrawal, Animesh</creatorcontrib><creatorcontrib>Mhaisalkar, Priyadarshini S</creatorcontrib><creatorcontrib>An, Jia</creatorcontrib><creatorcontrib>Chua, Chee Kai</creatorcontrib><creatorcontrib>Venkatraman, Subbu</creatorcontrib><title>A novel 3D printing method for cell alignment and differentiation</title><title>International journal of bioprinting</title><description>The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for cell orientation and then bioprint cells directly onto them. Topographic guidance features generate cues that influence adhered cell morphology and phenotype. The robotic dispensing system was modified to include a sharpened stylus that etched on a polystyrene surface. The same computer-aided design (CAD) software was used for both precision control of etching and bioink deposition. Various etched groove patterns such as linear, concentric circles, and sinusoidal wave patterns were possible. Fibroblasts and mesenchymal stem cells (MSC) were able to sense the grooves, as shown by their elongation and orientation in the direction of the features. The orientated MSCs displayed indications of lineage commitment as detected by fluorescence-activated cell sorting (FACS) analysis. A 2% gelatin bioink was then used to dispense cells onto the etched features using identical, programmed co-ordinates. The bioink allows the cells to contact sense the pattern while containing their deposition within the printed pattern.</description><subject>Automation</subject><subject>Bioengineering</subject><subject>Biological materials</subject><subject>CAD</subject><subject>Cell differentiation</subject><subject>Cell morphology</subject><subject>Computer aided design</subject><subject>Cytology</subject><subject>Deposition</subject><subject>Dispensing</subject><subject>Elongation</subject><subject>Etching</subject><subject>Fibroblasts</subject><subject>Flow cytometry</subject><subject>Gelatin</subject><subject>Grooves</subject><subject>Mesenchyme</subject><subject>Morphology</subject><subject>Orientation</subject><subject>Phenotypes</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Robotics</subject><subject>Sine waves</subject><subject>Software</subject><subject>Stem cells</subject><subject>Styli</subject><subject>Three dimensional printing</subject><subject>Topography</subject><issn>2424-7723</issn><issn>2424-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEtPwzAQhC0EElXpnaMlzgnrR2LnWAqUokpc4GwlfpRUiV3sFIl_j6E9zc5otKv9ELolUBIJNbvfvD6UFEhVAikB5AWaUU55IQHo5XkWgrJrtEhpDzmVBAiTM7RcYh--7YDZIz7E3k-93-HRTp_BYBci1nYYcDv0Oz9aP-HWG2x652zMrm-nPvgbdOXaIdnFWefo4_npffVSbN_Wm9VyW2hO66kgrOJaAoOm5rJiWuhKAhHGOdpx0cnOttzphnXScMsbyS0xYCxthGaOCM7m6O609xDD19GmSe3DMfp8UtG6FpKKCqrcglNLx5BStE7lr8Y2_igC6p-VyqzUHysFRGVW7Bfoglpd</recordid><startdate>20240805</startdate><enddate>20240805</enddate><creator>Bhuthalingam, Ramya</creator><creator>Lim, Pei Qi</creator><creator>A Irvine, Scott</creator><creator>Agrawal, Animesh</creator><creator>Mhaisalkar, Priyadarshini S</creator><creator>An, Jia</creator><creator>Chua, Chee Kai</creator><creator>Venkatraman, Subbu</creator><general>AccScience Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240805</creationdate><title>A novel 3D printing method for cell alignment and differentiation</title><author>Bhuthalingam, Ramya ; Lim, Pei Qi ; A Irvine, Scott ; Agrawal, Animesh ; Mhaisalkar, Priyadarshini S ; An, Jia ; Chua, Chee Kai ; Venkatraman, Subbu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-1354c8030964853c7c58017dff2b47b8bea4fc93b8d4e4984e1d0de297c3f1743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Bioengineering</topic><topic>Biological materials</topic><topic>CAD</topic><topic>Cell differentiation</topic><topic>Cell morphology</topic><topic>Computer aided design</topic><topic>Cytology</topic><topic>Deposition</topic><topic>Dispensing</topic><topic>Elongation</topic><topic>Etching</topic><topic>Fibroblasts</topic><topic>Flow cytometry</topic><topic>Gelatin</topic><topic>Grooves</topic><topic>Mesenchyme</topic><topic>Morphology</topic><topic>Orientation</topic><topic>Phenotypes</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Robotics</topic><topic>Sine waves</topic><topic>Software</topic><topic>Stem cells</topic><topic>Styli</topic><topic>Three dimensional printing</topic><topic>Topography</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhuthalingam, Ramya</creatorcontrib><creatorcontrib>Lim, Pei Qi</creatorcontrib><creatorcontrib>A Irvine, Scott</creatorcontrib><creatorcontrib>Agrawal, Animesh</creatorcontrib><creatorcontrib>Mhaisalkar, Priyadarshini S</creatorcontrib><creatorcontrib>An, Jia</creatorcontrib><creatorcontrib>Chua, Chee Kai</creatorcontrib><creatorcontrib>Venkatraman, Subbu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of bioprinting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhuthalingam, Ramya</au><au>Lim, Pei Qi</au><au>A Irvine, Scott</au><au>Agrawal, Animesh</au><au>Mhaisalkar, Priyadarshini S</au><au>An, Jia</au><au>Chua, Chee Kai</au><au>Venkatraman, Subbu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel 3D printing method for cell alignment and differentiation</atitle><jtitle>International journal of bioprinting</jtitle><date>2024-08-05</date><risdate>2024</risdate><volume>1</volume><issue>1</issue><spage>57</spage><pages>57-</pages><issn>2424-7723</issn><eissn>2424-8002</eissn><abstract>The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for cell orientation and then bioprint cells directly onto them. Topographic guidance features generate cues that influence adhered cell morphology and phenotype. The robotic dispensing system was modified to include a sharpened stylus that etched on a polystyrene surface. The same computer-aided design (CAD) software was used for both precision control of etching and bioink deposition. Various etched groove patterns such as linear, concentric circles, and sinusoidal wave patterns were possible. Fibroblasts and mesenchymal stem cells (MSC) were able to sense the grooves, as shown by their elongation and orientation in the direction of the features. The orientated MSCs displayed indications of lineage commitment as detected by fluorescence-activated cell sorting (FACS) analysis. A 2% gelatin bioink was then used to dispense cells onto the etched features using identical, programmed co-ordinates. The bioink allows the cells to contact sense the pattern while containing their deposition within the printed pattern.</abstract><cop>Singapore</cop><pub>AccScience Publishing</pub><doi>10.18063/IJB.2015.01.008</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2424-7723 |
ispartof | International journal of bioprinting, 2024-08, Vol.1 (1), p.57 |
issn | 2424-7723 2424-8002 |
language | eng |
recordid | cdi_proquest_journals_2667827505 |
source | PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Automation Bioengineering Biological materials CAD Cell differentiation Cell morphology Computer aided design Cytology Deposition Dispensing Elongation Etching Fibroblasts Flow cytometry Gelatin Grooves Mesenchyme Morphology Orientation Phenotypes Polystyrene Polystyrene resins Robotics Sine waves Software Stem cells Styli Three dimensional printing Topography |
title | A novel 3D printing method for cell alignment and differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%203D%20printing%20method%20for%20cell%20alignment%20and%20differentiation&rft.jtitle=International%20journal%20of%20bioprinting&rft.au=Bhuthalingam,%20Ramya&rft.date=2024-08-05&rft.volume=1&rft.issue=1&rft.spage=57&rft.pages=57-&rft.issn=2424-7723&rft.eissn=2424-8002&rft_id=info:doi/10.18063/IJB.2015.01.008&rft_dat=%3Cproquest_cross%3E2667827505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667827505&rft_id=info:pmid/&rfr_iscdi=true |