A novel 3D printing method for cell alignment and differentiation

The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of bioprinting 2024-08, Vol.1 (1), p.57
Hauptverfasser: Bhuthalingam, Ramya, Lim, Pei Qi, A Irvine, Scott, Agrawal, Animesh, Mhaisalkar, Priyadarshini S, An, Jia, Chua, Chee Kai, Venkatraman, Subbu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 57
container_title International journal of bioprinting
container_volume 1
creator Bhuthalingam, Ramya
Lim, Pei Qi
A Irvine, Scott
Agrawal, Animesh
Mhaisalkar, Priyadarshini S
An, Jia
Chua, Chee Kai
Venkatraman, Subbu
description The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for cell orientation and then bioprint cells directly onto them. Topographic guidance features generate cues that influence adhered cell morphology and phenotype. The robotic dispensing system was modified to include a sharpened stylus that etched on a polystyrene surface. The same computer-aided design (CAD) software was used for both precision control of etching and bioink deposition. Various etched groove patterns such as linear, concentric circles, and sinusoidal wave patterns were possible. Fibroblasts and mesenchymal stem cells (MSC) were able to sense the grooves, as shown by their elongation and orientation in the direction of the features. The orientated MSCs displayed indications of lineage commitment as detected by fluorescence-activated cell sorting (FACS) analysis. A 2% gelatin bioink was then used to dispense cells onto the etched features using identical, programmed co-ordinates. The bioink allows the cells to contact sense the pattern while containing their deposition within the printed pattern.
doi_str_mv 10.18063/IJB.2015.01.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667827505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667827505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-1354c8030964853c7c58017dff2b47b8bea4fc93b8d4e4984e1d0de297c3f1743</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EElXpnaMlzgnrR2LnWAqUokpc4GwlfpRUiV3sFIl_j6E9zc5otKv9ELolUBIJNbvfvD6UFEhVAikB5AWaUU55IQHo5XkWgrJrtEhpDzmVBAiTM7RcYh--7YDZIz7E3k-93-HRTp_BYBci1nYYcDv0Oz9aP-HWG2x652zMrm-nPvgbdOXaIdnFWefo4_npffVSbN_Wm9VyW2hO66kgrOJaAoOm5rJiWuhKAhHGOdpx0cnOttzphnXScMsbyS0xYCxthGaOCM7m6O609xDD19GmSe3DMfp8UtG6FpKKCqrcglNLx5BStE7lr8Y2_igC6p-VyqzUHysFRGVW7Bfoglpd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667827505</pqid></control><display><type>article</type><title>A novel 3D printing method for cell alignment and differentiation</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bhuthalingam, Ramya ; Lim, Pei Qi ; A Irvine, Scott ; Agrawal, Animesh ; Mhaisalkar, Priyadarshini S ; An, Jia ; Chua, Chee Kai ; Venkatraman, Subbu</creator><creatorcontrib>Bhuthalingam, Ramya ; Lim, Pei Qi ; A Irvine, Scott ; Agrawal, Animesh ; Mhaisalkar, Priyadarshini S ; An, Jia ; Chua, Chee Kai ; Venkatraman, Subbu</creatorcontrib><description>The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for cell orientation and then bioprint cells directly onto them. Topographic guidance features generate cues that influence adhered cell morphology and phenotype. The robotic dispensing system was modified to include a sharpened stylus that etched on a polystyrene surface. The same computer-aided design (CAD) software was used for both precision control of etching and bioink deposition. Various etched groove patterns such as linear, concentric circles, and sinusoidal wave patterns were possible. Fibroblasts and mesenchymal stem cells (MSC) were able to sense the grooves, as shown by their elongation and orientation in the direction of the features. The orientated MSCs displayed indications of lineage commitment as detected by fluorescence-activated cell sorting (FACS) analysis. A 2% gelatin bioink was then used to dispense cells onto the etched features using identical, programmed co-ordinates. The bioink allows the cells to contact sense the pattern while containing their deposition within the printed pattern.</description><identifier>ISSN: 2424-7723</identifier><identifier>EISSN: 2424-8002</identifier><identifier>DOI: 10.18063/IJB.2015.01.008</identifier><language>eng</language><publisher>Singapore: AccScience Publishing</publisher><subject>Automation ; Bioengineering ; Biological materials ; CAD ; Cell differentiation ; Cell morphology ; Computer aided design ; Cytology ; Deposition ; Dispensing ; Elongation ; Etching ; Fibroblasts ; Flow cytometry ; Gelatin ; Grooves ; Mesenchyme ; Morphology ; Orientation ; Phenotypes ; Polystyrene ; Polystyrene resins ; Robotics ; Sine waves ; Software ; Stem cells ; Styli ; Three dimensional printing ; Topography</subject><ispartof>International journal of bioprinting, 2024-08, Vol.1 (1), p.57</ispartof><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-1354c8030964853c7c58017dff2b47b8bea4fc93b8d4e4984e1d0de297c3f1743</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bhuthalingam, Ramya</creatorcontrib><creatorcontrib>Lim, Pei Qi</creatorcontrib><creatorcontrib>A Irvine, Scott</creatorcontrib><creatorcontrib>Agrawal, Animesh</creatorcontrib><creatorcontrib>Mhaisalkar, Priyadarshini S</creatorcontrib><creatorcontrib>An, Jia</creatorcontrib><creatorcontrib>Chua, Chee Kai</creatorcontrib><creatorcontrib>Venkatraman, Subbu</creatorcontrib><title>A novel 3D printing method for cell alignment and differentiation</title><title>International journal of bioprinting</title><description>The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for cell orientation and then bioprint cells directly onto them. Topographic guidance features generate cues that influence adhered cell morphology and phenotype. The robotic dispensing system was modified to include a sharpened stylus that etched on a polystyrene surface. The same computer-aided design (CAD) software was used for both precision control of etching and bioink deposition. Various etched groove patterns such as linear, concentric circles, and sinusoidal wave patterns were possible. Fibroblasts and mesenchymal stem cells (MSC) were able to sense the grooves, as shown by their elongation and orientation in the direction of the features. The orientated MSCs displayed indications of lineage commitment as detected by fluorescence-activated cell sorting (FACS) analysis. A 2% gelatin bioink was then used to dispense cells onto the etched features using identical, programmed co-ordinates. The bioink allows the cells to contact sense the pattern while containing their deposition within the printed pattern.</description><subject>Automation</subject><subject>Bioengineering</subject><subject>Biological materials</subject><subject>CAD</subject><subject>Cell differentiation</subject><subject>Cell morphology</subject><subject>Computer aided design</subject><subject>Cytology</subject><subject>Deposition</subject><subject>Dispensing</subject><subject>Elongation</subject><subject>Etching</subject><subject>Fibroblasts</subject><subject>Flow cytometry</subject><subject>Gelatin</subject><subject>Grooves</subject><subject>Mesenchyme</subject><subject>Morphology</subject><subject>Orientation</subject><subject>Phenotypes</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Robotics</subject><subject>Sine waves</subject><subject>Software</subject><subject>Stem cells</subject><subject>Styli</subject><subject>Three dimensional printing</subject><subject>Topography</subject><issn>2424-7723</issn><issn>2424-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEtPwzAQhC0EElXpnaMlzgnrR2LnWAqUokpc4GwlfpRUiV3sFIl_j6E9zc5otKv9ELolUBIJNbvfvD6UFEhVAikB5AWaUU55IQHo5XkWgrJrtEhpDzmVBAiTM7RcYh--7YDZIz7E3k-93-HRTp_BYBci1nYYcDv0Oz9aP-HWG2x652zMrm-nPvgbdOXaIdnFWefo4_npffVSbN_Wm9VyW2hO66kgrOJaAoOm5rJiWuhKAhHGOdpx0cnOttzphnXScMsbyS0xYCxthGaOCM7m6O609xDD19GmSe3DMfp8UtG6FpKKCqrcglNLx5BStE7lr8Y2_igC6p-VyqzUHysFRGVW7Bfoglpd</recordid><startdate>20240805</startdate><enddate>20240805</enddate><creator>Bhuthalingam, Ramya</creator><creator>Lim, Pei Qi</creator><creator>A Irvine, Scott</creator><creator>Agrawal, Animesh</creator><creator>Mhaisalkar, Priyadarshini S</creator><creator>An, Jia</creator><creator>Chua, Chee Kai</creator><creator>Venkatraman, Subbu</creator><general>AccScience Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240805</creationdate><title>A novel 3D printing method for cell alignment and differentiation</title><author>Bhuthalingam, Ramya ; Lim, Pei Qi ; A Irvine, Scott ; Agrawal, Animesh ; Mhaisalkar, Priyadarshini S ; An, Jia ; Chua, Chee Kai ; Venkatraman, Subbu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-1354c8030964853c7c58017dff2b47b8bea4fc93b8d4e4984e1d0de297c3f1743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Bioengineering</topic><topic>Biological materials</topic><topic>CAD</topic><topic>Cell differentiation</topic><topic>Cell morphology</topic><topic>Computer aided design</topic><topic>Cytology</topic><topic>Deposition</topic><topic>Dispensing</topic><topic>Elongation</topic><topic>Etching</topic><topic>Fibroblasts</topic><topic>Flow cytometry</topic><topic>Gelatin</topic><topic>Grooves</topic><topic>Mesenchyme</topic><topic>Morphology</topic><topic>Orientation</topic><topic>Phenotypes</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Robotics</topic><topic>Sine waves</topic><topic>Software</topic><topic>Stem cells</topic><topic>Styli</topic><topic>Three dimensional printing</topic><topic>Topography</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhuthalingam, Ramya</creatorcontrib><creatorcontrib>Lim, Pei Qi</creatorcontrib><creatorcontrib>A Irvine, Scott</creatorcontrib><creatorcontrib>Agrawal, Animesh</creatorcontrib><creatorcontrib>Mhaisalkar, Priyadarshini S</creatorcontrib><creatorcontrib>An, Jia</creatorcontrib><creatorcontrib>Chua, Chee Kai</creatorcontrib><creatorcontrib>Venkatraman, Subbu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of bioprinting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhuthalingam, Ramya</au><au>Lim, Pei Qi</au><au>A Irvine, Scott</au><au>Agrawal, Animesh</au><au>Mhaisalkar, Priyadarshini S</au><au>An, Jia</au><au>Chua, Chee Kai</au><au>Venkatraman, Subbu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel 3D printing method for cell alignment and differentiation</atitle><jtitle>International journal of bioprinting</jtitle><date>2024-08-05</date><risdate>2024</risdate><volume>1</volume><issue>1</issue><spage>57</spage><pages>57-</pages><issn>2424-7723</issn><eissn>2424-8002</eissn><abstract>The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for cell orientation and then bioprint cells directly onto them. Topographic guidance features generate cues that influence adhered cell morphology and phenotype. The robotic dispensing system was modified to include a sharpened stylus that etched on a polystyrene surface. The same computer-aided design (CAD) software was used for both precision control of etching and bioink deposition. Various etched groove patterns such as linear, concentric circles, and sinusoidal wave patterns were possible. Fibroblasts and mesenchymal stem cells (MSC) were able to sense the grooves, as shown by their elongation and orientation in the direction of the features. The orientated MSCs displayed indications of lineage commitment as detected by fluorescence-activated cell sorting (FACS) analysis. A 2% gelatin bioink was then used to dispense cells onto the etched features using identical, programmed co-ordinates. The bioink allows the cells to contact sense the pattern while containing their deposition within the printed pattern.</abstract><cop>Singapore</cop><pub>AccScience Publishing</pub><doi>10.18063/IJB.2015.01.008</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2424-7723
ispartof International journal of bioprinting, 2024-08, Vol.1 (1), p.57
issn 2424-7723
2424-8002
language eng
recordid cdi_proquest_journals_2667827505
source PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Automation
Bioengineering
Biological materials
CAD
Cell differentiation
Cell morphology
Computer aided design
Cytology
Deposition
Dispensing
Elongation
Etching
Fibroblasts
Flow cytometry
Gelatin
Grooves
Mesenchyme
Morphology
Orientation
Phenotypes
Polystyrene
Polystyrene resins
Robotics
Sine waves
Software
Stem cells
Styli
Three dimensional printing
Topography
title A novel 3D printing method for cell alignment and differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%203D%20printing%20method%20for%20cell%20alignment%20and%20differentiation&rft.jtitle=International%20journal%20of%20bioprinting&rft.au=Bhuthalingam,%20Ramya&rft.date=2024-08-05&rft.volume=1&rft.issue=1&rft.spage=57&rft.pages=57-&rft.issn=2424-7723&rft.eissn=2424-8002&rft_id=info:doi/10.18063/IJB.2015.01.008&rft_dat=%3Cproquest_cross%3E2667827505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667827505&rft_id=info:pmid/&rfr_iscdi=true