The Generalized Fractional Proportional Delta Operator and New Generalized Transforms in Discrete Fractional Calculus

In this research work, the aim is to develop the fractional proportional delta operator and present the generalized discrete Laplace transform and its convolution with the newly introduced fractional proportional delta operator. Moreover, this transform is a connection between Sumudu and Laplace tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-05, Vol.2022, p.1-10
Hauptverfasser: Amalraj, J. Leo, Susai Manuel, M. Maria, Meganathan, M., Syed Ali, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Amalraj, J. Leo
Susai Manuel, M. Maria
Meganathan, M.
Syed Ali, M.
description In this research work, the aim is to develop the fractional proportional delta operator and present the generalized discrete Laplace transform and its convolution with the newly introduced fractional proportional delta operator. Moreover, this transform is a connection between Sumudu and Laplace transforms, which yields several applications in pure and applied science. The research work also investigates the fractional proportional differences and its sum on Riemann–Liouville and Mittag–Leffler functions. As an application of this research is to find new results and properties of fractional Laplace transform, the comparison of the existing results with this research work is also done. Moreover, we used the two types of solutions, namely, closed and summation forms in Laplace transform and verified with numerical results.
doi_str_mv 10.1155/2022/4849312
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667631316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667631316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-f9a55f9acfc4091f765f0ccaf7e93afb024c80af289f2c04bb96782e3666943e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs7f0DApY7NeyZLqbYKxbqo4C6kaUJTppMxmaHorzelXejGzX3Adw_nHgCuMbrHmPMRQYSMWMUkxeQEDDAXtOCYlad5RoQVmNCPc3CR0gYhgjmuBqBfrC2c2sZGXftvu4KTqE3nQ6Nr-BZDG-JxebR1p-G8zWAXItTNCr7a3Z_TRdRNciFuE_QNfPTJRNvZ34pjXZu-7tMlOHO6Tvbq2IfgffK0GD8Xs_n0ZfwwKwwRZVc4qTnPxTjDkMSuFNwhY7QrraTaLfNPpkLakUo6YhBbLqUoK2KpEEIyaukQ3Bx02xg-e5s6tQl9zE6SIkKUgmKKRabuDpSJIaVonWqj3-r4pTBS-2DVPlh1DDbjtwd87ZuV3vn_6R_1JXlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667631316</pqid></control><display><type>article</type><title>The Generalized Fractional Proportional Delta Operator and New Generalized Transforms in Discrete Fractional Calculus</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Amalraj, J. Leo ; Susai Manuel, M. Maria ; Meganathan, M. ; Syed Ali, M.</creator><contributor>Sitthiwirattham, Thanin ; Thanin Sitthiwirattham</contributor><creatorcontrib>Amalraj, J. Leo ; Susai Manuel, M. Maria ; Meganathan, M. ; Syed Ali, M. ; Sitthiwirattham, Thanin ; Thanin Sitthiwirattham</creatorcontrib><description>In this research work, the aim is to develop the fractional proportional delta operator and present the generalized discrete Laplace transform and its convolution with the newly introduced fractional proportional delta operator. Moreover, this transform is a connection between Sumudu and Laplace transforms, which yields several applications in pure and applied science. The research work also investigates the fractional proportional differences and its sum on Riemann–Liouville and Mittag–Leffler functions. As an application of this research is to find new results and properties of fractional Laplace transform, the comparison of the existing results with this research work is also done. Moreover, we used the two types of solutions, namely, closed and summation forms in Laplace transform and verified with numerical results.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/4849312</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Calculus ; Engineering ; Fractional calculus ; Laplace transforms ; Linear operators ; Mathematical functions</subject><ispartof>Mathematical problems in engineering, 2022-05, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 J. Leo Amalraj et al.</rights><rights>Copyright © 2022 J. Leo Amalraj et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-f9a55f9acfc4091f765f0ccaf7e93afb024c80af289f2c04bb96782e3666943e3</citedby><cites>FETCH-LOGICAL-c267t-f9a55f9acfc4091f765f0ccaf7e93afb024c80af289f2c04bb96782e3666943e3</cites><orcidid>0000-0002-8741-4155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Sitthiwirattham, Thanin</contributor><contributor>Thanin Sitthiwirattham</contributor><creatorcontrib>Amalraj, J. Leo</creatorcontrib><creatorcontrib>Susai Manuel, M. Maria</creatorcontrib><creatorcontrib>Meganathan, M.</creatorcontrib><creatorcontrib>Syed Ali, M.</creatorcontrib><title>The Generalized Fractional Proportional Delta Operator and New Generalized Transforms in Discrete Fractional Calculus</title><title>Mathematical problems in engineering</title><description>In this research work, the aim is to develop the fractional proportional delta operator and present the generalized discrete Laplace transform and its convolution with the newly introduced fractional proportional delta operator. Moreover, this transform is a connection between Sumudu and Laplace transforms, which yields several applications in pure and applied science. The research work also investigates the fractional proportional differences and its sum on Riemann–Liouville and Mittag–Leffler functions. As an application of this research is to find new results and properties of fractional Laplace transform, the comparison of the existing results with this research work is also done. Moreover, we used the two types of solutions, namely, closed and summation forms in Laplace transform and verified with numerical results.</description><subject>Calculus</subject><subject>Engineering</subject><subject>Fractional calculus</subject><subject>Laplace transforms</subject><subject>Linear operators</subject><subject>Mathematical functions</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKs7f0DApY7NeyZLqbYKxbqo4C6kaUJTppMxmaHorzelXejGzX3Adw_nHgCuMbrHmPMRQYSMWMUkxeQEDDAXtOCYlad5RoQVmNCPc3CR0gYhgjmuBqBfrC2c2sZGXftvu4KTqE3nQ6Nr-BZDG-JxebR1p-G8zWAXItTNCr7a3Z_TRdRNciFuE_QNfPTJRNvZ34pjXZu-7tMlOHO6Tvbq2IfgffK0GD8Xs_n0ZfwwKwwRZVc4qTnPxTjDkMSuFNwhY7QrraTaLfNPpkLakUo6YhBbLqUoK2KpEEIyaukQ3Bx02xg-e5s6tQl9zE6SIkKUgmKKRabuDpSJIaVonWqj3-r4pTBS-2DVPlh1DDbjtwd87ZuV3vn_6R_1JXlg</recordid><startdate>20220513</startdate><enddate>20220513</enddate><creator>Amalraj, J. Leo</creator><creator>Susai Manuel, M. Maria</creator><creator>Meganathan, M.</creator><creator>Syed Ali, M.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8741-4155</orcidid></search><sort><creationdate>20220513</creationdate><title>The Generalized Fractional Proportional Delta Operator and New Generalized Transforms in Discrete Fractional Calculus</title><author>Amalraj, J. Leo ; Susai Manuel, M. Maria ; Meganathan, M. ; Syed Ali, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-f9a55f9acfc4091f765f0ccaf7e93afb024c80af289f2c04bb96782e3666943e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calculus</topic><topic>Engineering</topic><topic>Fractional calculus</topic><topic>Laplace transforms</topic><topic>Linear operators</topic><topic>Mathematical functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amalraj, J. Leo</creatorcontrib><creatorcontrib>Susai Manuel, M. Maria</creatorcontrib><creatorcontrib>Meganathan, M.</creatorcontrib><creatorcontrib>Syed Ali, M.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amalraj, J. Leo</au><au>Susai Manuel, M. Maria</au><au>Meganathan, M.</au><au>Syed Ali, M.</au><au>Sitthiwirattham, Thanin</au><au>Thanin Sitthiwirattham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalized Fractional Proportional Delta Operator and New Generalized Transforms in Discrete Fractional Calculus</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-05-13</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this research work, the aim is to develop the fractional proportional delta operator and present the generalized discrete Laplace transform and its convolution with the newly introduced fractional proportional delta operator. Moreover, this transform is a connection between Sumudu and Laplace transforms, which yields several applications in pure and applied science. The research work also investigates the fractional proportional differences and its sum on Riemann–Liouville and Mittag–Leffler functions. As an application of this research is to find new results and properties of fractional Laplace transform, the comparison of the existing results with this research work is also done. Moreover, we used the two types of solutions, namely, closed and summation forms in Laplace transform and verified with numerical results.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/4849312</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8741-4155</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022-05, Vol.2022, p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2667631316
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Calculus
Engineering
Fractional calculus
Laplace transforms
Linear operators
Mathematical functions
title The Generalized Fractional Proportional Delta Operator and New Generalized Transforms in Discrete Fractional Calculus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalized%20Fractional%20Proportional%20Delta%20Operator%20and%20New%20Generalized%20Transforms%20in%20Discrete%20Fractional%20Calculus&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Amalraj,%20J.%20Leo&rft.date=2022-05-13&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/4849312&rft_dat=%3Cproquest_cross%3E2667631316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667631316&rft_id=info:pmid/&rfr_iscdi=true