Implementation of soft-computing models for prediction of flexural strength of pervious concrete hybridized with rice husk ash and calcium carbide waste

Pervious concrete is a kind of concrete used for storm-water management due to its high porosity and permeability. However, its’ flexural strength as the most desirable mechanical properties was predicted in this study. The paper aims to demonstrate three soft-computing models, i.e., artificial neur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modeling earth systems and environment 2022-06, Vol.8 (2), p.1933-1947
Hauptverfasser: Malami, Salim Idris, Musa, A. A., Haruna, S. I., Aliyu, U. U., Usman, A. G., Abdurrahman, M. I., Bashir, Abba, Abba, S. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1947
container_issue 2
container_start_page 1933
container_title Modeling earth systems and environment
container_volume 8
creator Malami, Salim Idris
Musa, A. A.
Haruna, S. I.
Aliyu, U. U.
Usman, A. G.
Abdurrahman, M. I.
Bashir, Abba
Abba, S. I.
description Pervious concrete is a kind of concrete used for storm-water management due to its high porosity and permeability. However, its’ flexural strength as the most desirable mechanical properties was predicted in this study. The paper aims to demonstrate three soft-computing models, i.e., artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) were applied for the prediction of flexural strength ( σ f ) of pervious Concrete (PC) incorporated with calcium carbide waste (CCW) and rice husk ash (RHA) as supplementary cementation materials. The models were trained on the experimental data obtained by replacing cement content from 0 to 10% RHA and 0 to 20% CCW in the PC at 3-, 7-, and 28-days curing age. The results indicated that three AI-based models ANN, SVM, and ANFIS have predicted the flexural strength with high accuracy in both the testing and training stages, following the performance evaluation involving; Nash–Sutcliffe efficiency (NSE), correlation coefficient (CC), mean square error (MSE), and root mean square error (RMSE). All the input variables contribute to the accuracy of the model. The ANFIS-M5 (NSE = 0.9997 and RMSE = 0.0044 in testing phase) proved merit despite the acceptable accuracy obtained in the ANN model. The hybrid ANFIS predicts the flexural strength of hybridized pervious concrete with the highest accuracy compared to the other two soft-computing models.
doi_str_mv 10.1007/s40808-021-01195-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667622297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667622297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-53e4d746f0515b283de10308abf93623b063ce608350559fa3cec06cc23a288a3</originalsourceid><addsrcrecordid>eNp9kctOxDAMRSsEEiPgB1hFYl1wkjbTLhHiJSGxgXWUps5MhrYpScowfAmfS2B47FjZvjrXlnyz7JjCKQWYn4UCKqhyYDQHSusyL3ayGeOC54JRuvvbA9_PjkJYAQAVTIi6nmXvt_3YYY9DVNG6gThDgjMx164fp2iHBeldi10gxnkyemyt_uFMh6-TVx0J0eOwiMtPcUT_Yt0UiHaD9hiRLDeNt619w5asbYK81UmcwhNRYUnU0BKtOm2nPlXf2BbJWoWIh9meUV3Ao-96kD1eXT5c3OR399e3F-d3uWZFHfOSY9HOC2GgpGXDKt4iBQ6VakzNBeMNCK5RQMVLKMvaqDRpEFozrlhVKX6QnWz3jt49TxiiXLnJD-mkTC-aC8ZYPU8U21LauxA8Gjl62yu_kRTkZwhyG4JMIcivEGSRTHxrCgkeFuj_Vv_j-gAYh4zU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667622297</pqid></control><display><type>article</type><title>Implementation of soft-computing models for prediction of flexural strength of pervious concrete hybridized with rice husk ash and calcium carbide waste</title><source>SpringerNature Journals</source><creator>Malami, Salim Idris ; Musa, A. A. ; Haruna, S. I. ; Aliyu, U. U. ; Usman, A. G. ; Abdurrahman, M. I. ; Bashir, Abba ; Abba, S. I.</creator><creatorcontrib>Malami, Salim Idris ; Musa, A. A. ; Haruna, S. I. ; Aliyu, U. U. ; Usman, A. G. ; Abdurrahman, M. I. ; Bashir, Abba ; Abba, S. I.</creatorcontrib><description>Pervious concrete is a kind of concrete used for storm-water management due to its high porosity and permeability. However, its’ flexural strength as the most desirable mechanical properties was predicted in this study. The paper aims to demonstrate three soft-computing models, i.e., artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) were applied for the prediction of flexural strength ( σ f ) of pervious Concrete (PC) incorporated with calcium carbide waste (CCW) and rice husk ash (RHA) as supplementary cementation materials. The models were trained on the experimental data obtained by replacing cement content from 0 to 10% RHA and 0 to 20% CCW in the PC at 3-, 7-, and 28-days curing age. The results indicated that three AI-based models ANN, SVM, and ANFIS have predicted the flexural strength with high accuracy in both the testing and training stages, following the performance evaluation involving; Nash–Sutcliffe efficiency (NSE), correlation coefficient (CC), mean square error (MSE), and root mean square error (RMSE). All the input variables contribute to the accuracy of the model. The ANFIS-M5 (NSE = 0.9997 and RMSE = 0.0044 in testing phase) proved merit despite the acceptable accuracy obtained in the ANN model. The hybrid ANFIS predicts the flexural strength of hybridized pervious concrete with the highest accuracy compared to the other two soft-computing models.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-021-01195-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Adaptive systems ; Artificial neural networks ; Ashes ; Calcium ; Cementation ; Cemented carbides ; Chemistry and Earth Sciences ; Computation ; Computer Science ; Concrete ; Correlation coefficient ; Correlation coefficients ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Environment ; Flexural strength ; Fuzzy logic ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Mean square errors ; Mechanical properties ; Model accuracy ; Neural networks ; Original Article ; Performance evaluation ; Permeability ; Physics ; Porosity ; Root-mean-square errors ; Statistics for Engineering ; Storms ; Stormwater ; Stormwater management ; Strength ; Support vector machines ; Testing ; Water management</subject><ispartof>Modeling earth systems and environment, 2022-06, Vol.8 (2), p.1933-1947</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-53e4d746f0515b283de10308abf93623b063ce608350559fa3cec06cc23a288a3</citedby><cites>FETCH-LOGICAL-c249t-53e4d746f0515b283de10308abf93623b063ce608350559fa3cec06cc23a288a3</cites><orcidid>0000-0001-9356-2798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40808-021-01195-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40808-021-01195-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Malami, Salim Idris</creatorcontrib><creatorcontrib>Musa, A. A.</creatorcontrib><creatorcontrib>Haruna, S. I.</creatorcontrib><creatorcontrib>Aliyu, U. U.</creatorcontrib><creatorcontrib>Usman, A. G.</creatorcontrib><creatorcontrib>Abdurrahman, M. I.</creatorcontrib><creatorcontrib>Bashir, Abba</creatorcontrib><creatorcontrib>Abba, S. I.</creatorcontrib><title>Implementation of soft-computing models for prediction of flexural strength of pervious concrete hybridized with rice husk ash and calcium carbide waste</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>Pervious concrete is a kind of concrete used for storm-water management due to its high porosity and permeability. However, its’ flexural strength as the most desirable mechanical properties was predicted in this study. The paper aims to demonstrate three soft-computing models, i.e., artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) were applied for the prediction of flexural strength ( σ f ) of pervious Concrete (PC) incorporated with calcium carbide waste (CCW) and rice husk ash (RHA) as supplementary cementation materials. The models were trained on the experimental data obtained by replacing cement content from 0 to 10% RHA and 0 to 20% CCW in the PC at 3-, 7-, and 28-days curing age. The results indicated that three AI-based models ANN, SVM, and ANFIS have predicted the flexural strength with high accuracy in both the testing and training stages, following the performance evaluation involving; Nash–Sutcliffe efficiency (NSE), correlation coefficient (CC), mean square error (MSE), and root mean square error (RMSE). All the input variables contribute to the accuracy of the model. The ANFIS-M5 (NSE = 0.9997 and RMSE = 0.0044 in testing phase) proved merit despite the acceptable accuracy obtained in the ANN model. The hybrid ANFIS predicts the flexural strength of hybridized pervious concrete with the highest accuracy compared to the other two soft-computing models.</description><subject>Accuracy</subject><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Ashes</subject><subject>Calcium</subject><subject>Cementation</subject><subject>Cemented carbides</subject><subject>Chemistry and Earth Sciences</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Concrete</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Flexural strength</subject><subject>Fuzzy logic</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mean square errors</subject><subject>Mechanical properties</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Permeability</subject><subject>Physics</subject><subject>Porosity</subject><subject>Root-mean-square errors</subject><subject>Statistics for Engineering</subject><subject>Storms</subject><subject>Stormwater</subject><subject>Stormwater management</subject><subject>Strength</subject><subject>Support vector machines</subject><subject>Testing</subject><subject>Water management</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOxDAMRSsEEiPgB1hFYl1wkjbTLhHiJSGxgXWUps5MhrYpScowfAmfS2B47FjZvjrXlnyz7JjCKQWYn4UCKqhyYDQHSusyL3ayGeOC54JRuvvbA9_PjkJYAQAVTIi6nmXvt_3YYY9DVNG6gThDgjMx164fp2iHBeldi10gxnkyemyt_uFMh6-TVx0J0eOwiMtPcUT_Yt0UiHaD9hiRLDeNt619w5asbYK81UmcwhNRYUnU0BKtOm2nPlXf2BbJWoWIh9meUV3Ao-96kD1eXT5c3OR399e3F-d3uWZFHfOSY9HOC2GgpGXDKt4iBQ6VakzNBeMNCK5RQMVLKMvaqDRpEFozrlhVKX6QnWz3jt49TxiiXLnJD-mkTC-aC8ZYPU8U21LauxA8Gjl62yu_kRTkZwhyG4JMIcivEGSRTHxrCgkeFuj_Vv_j-gAYh4zU</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Malami, Salim Idris</creator><creator>Musa, A. A.</creator><creator>Haruna, S. I.</creator><creator>Aliyu, U. U.</creator><creator>Usman, A. G.</creator><creator>Abdurrahman, M. I.</creator><creator>Bashir, Abba</creator><creator>Abba, S. I.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-9356-2798</orcidid></search><sort><creationdate>20220601</creationdate><title>Implementation of soft-computing models for prediction of flexural strength of pervious concrete hybridized with rice husk ash and calcium carbide waste</title><author>Malami, Salim Idris ; Musa, A. A. ; Haruna, S. I. ; Aliyu, U. U. ; Usman, A. G. ; Abdurrahman, M. I. ; Bashir, Abba ; Abba, S. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-53e4d746f0515b283de10308abf93623b063ce608350559fa3cec06cc23a288a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Ashes</topic><topic>Calcium</topic><topic>Cementation</topic><topic>Cemented carbides</topic><topic>Chemistry and Earth Sciences</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Concrete</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Flexural strength</topic><topic>Fuzzy logic</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mean square errors</topic><topic>Mechanical properties</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Permeability</topic><topic>Physics</topic><topic>Porosity</topic><topic>Root-mean-square errors</topic><topic>Statistics for Engineering</topic><topic>Storms</topic><topic>Stormwater</topic><topic>Stormwater management</topic><topic>Strength</topic><topic>Support vector machines</topic><topic>Testing</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malami, Salim Idris</creatorcontrib><creatorcontrib>Musa, A. A.</creatorcontrib><creatorcontrib>Haruna, S. I.</creatorcontrib><creatorcontrib>Aliyu, U. U.</creatorcontrib><creatorcontrib>Usman, A. G.</creatorcontrib><creatorcontrib>Abdurrahman, M. I.</creatorcontrib><creatorcontrib>Bashir, Abba</creatorcontrib><creatorcontrib>Abba, S. I.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malami, Salim Idris</au><au>Musa, A. A.</au><au>Haruna, S. I.</au><au>Aliyu, U. U.</au><au>Usman, A. G.</au><au>Abdurrahman, M. I.</au><au>Bashir, Abba</au><au>Abba, S. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of soft-computing models for prediction of flexural strength of pervious concrete hybridized with rice husk ash and calcium carbide waste</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>8</volume><issue>2</issue><spage>1933</spage><epage>1947</epage><pages>1933-1947</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>Pervious concrete is a kind of concrete used for storm-water management due to its high porosity and permeability. However, its’ flexural strength as the most desirable mechanical properties was predicted in this study. The paper aims to demonstrate three soft-computing models, i.e., artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) were applied for the prediction of flexural strength ( σ f ) of pervious Concrete (PC) incorporated with calcium carbide waste (CCW) and rice husk ash (RHA) as supplementary cementation materials. The models were trained on the experimental data obtained by replacing cement content from 0 to 10% RHA and 0 to 20% CCW in the PC at 3-, 7-, and 28-days curing age. The results indicated that three AI-based models ANN, SVM, and ANFIS have predicted the flexural strength with high accuracy in both the testing and training stages, following the performance evaluation involving; Nash–Sutcliffe efficiency (NSE), correlation coefficient (CC), mean square error (MSE), and root mean square error (RMSE). All the input variables contribute to the accuracy of the model. The ANFIS-M5 (NSE = 0.9997 and RMSE = 0.0044 in testing phase) proved merit despite the acceptable accuracy obtained in the ANN model. The hybrid ANFIS predicts the flexural strength of hybridized pervious concrete with the highest accuracy compared to the other two soft-computing models.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-021-01195-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9356-2798</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2363-6203
ispartof Modeling earth systems and environment, 2022-06, Vol.8 (2), p.1933-1947
issn 2363-6203
2363-6211
language eng
recordid cdi_proquest_journals_2667622297
source SpringerNature Journals
subjects Accuracy
Adaptive systems
Artificial neural networks
Ashes
Calcium
Cementation
Cemented carbides
Chemistry and Earth Sciences
Computation
Computer Science
Concrete
Correlation coefficient
Correlation coefficients
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Ecosystems
Environment
Flexural strength
Fuzzy logic
Math. Appl. in Environmental Science
Mathematical Applications in the Physical Sciences
Mean square errors
Mechanical properties
Model accuracy
Neural networks
Original Article
Performance evaluation
Permeability
Physics
Porosity
Root-mean-square errors
Statistics for Engineering
Storms
Stormwater
Stormwater management
Strength
Support vector machines
Testing
Water management
title Implementation of soft-computing models for prediction of flexural strength of pervious concrete hybridized with rice husk ash and calcium carbide waste
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T06%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20soft-computing%20models%20for%20prediction%20of%20flexural%20strength%20of%20pervious%20concrete%20hybridized%20with%20rice%20husk%20ash%20and%20calcium%20carbide%20waste&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Malami,%20Salim%20Idris&rft.date=2022-06-01&rft.volume=8&rft.issue=2&rft.spage=1933&rft.epage=1947&rft.pages=1933-1947&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-021-01195-4&rft_dat=%3Cproquest_cross%3E2667622297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667622297&rft_id=info:pmid/&rfr_iscdi=true