Structural insight into PRMT5 inhibitors through amalgamating pharmacophore-based virtual screening, ADME toxicity, and binding energy studies to identify new inhibitors by molecular docking

Protein arginine methyltransferase 5 (PRMT5) is a member of the methyltransferases family, a type-II arginine enzyme crucial for many cellular processes and associated with many cancer diseases. In this study, 2D QSAR study, pharmacophore-based 3D QSAR modeling, virtual screening, and binding free e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural chemistry 2022-08, Vol.33 (4), p.1223-1239
Hauptverfasser: Bathula, Revanth, Lanka, Goverdhan, Chakravarty, Madhulika, Somadi, Gururaj, Sivan, Sree Kanth, Jain, Alok, Potlapally, Sarita Rajender
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1239
container_issue 4
container_start_page 1223
container_title Structural chemistry
container_volume 33
creator Bathula, Revanth
Lanka, Goverdhan
Chakravarty, Madhulika
Somadi, Gururaj
Sivan, Sree Kanth
Jain, Alok
Potlapally, Sarita Rajender
description Protein arginine methyltransferase 5 (PRMT5) is a member of the methyltransferases family, a type-II arginine enzyme crucial for many cellular processes and associated with many cancer diseases. In this study, 2D QSAR study, pharmacophore-based 3D QSAR modeling, virtual screening, and binding free energy studies were carried out from a set of 61 reported potent compounds being inhibitors of PRMT5 protein. A five-point pharmacophore model (AADHR) was generated and this model is used to generate an atom-based 3-dimensional quantitative structure–activity relationship (3D QSAR). The obtained 3D QSAR model has better correlation coefficient ( R 2  = 0.91), cross-validation coefficient ( Q 2  = 0.82), F value (140.3), low RMSE (0.47), and Pearson R value (0.91). A library of 329,825 molecules (ChEMBL database) is screened with the pharmacophore model to retrieve hit molecules that are further subjected for molecular docking to identify best fit-active conformations binding at the receptor site of PRMT5 protein. Furthermore, we calculated ADME and toxicity properties using the QikProp module and pkCSM server. The lead molecules were prioritized by glide scores and binding free energy studies. Finally, we have evaluated the stability of protein–ligand complexes by performing an all-atom MD simulation in explicit solvent. MD results further strengthen our findings.
doi_str_mv 10.1007/s11224-022-01918-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2667456484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A704632316</galeid><sourcerecordid>A704632316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-83b6746c93b26f763660a10d06fa7cff5abd9c691ed3998e9c6782a1e8b7da6f3</originalsourceid><addsrcrecordid>eNp9UV2L1TAULKLgevUP-BTwdbPmo03bx8u6q8Iuiq7PIU1O2qxtck1StX_O32bWK6yCSEjOcJiZc8hU1XNKzigh7ctEKWM1JoxhQnva4e1BdUKbluGeEPqwYFITXC55XD1J6bY0qeDNSfXjY46rzmtUM3I-uXHKpeaA3n-4vmkKnNzgcogJ5SmGdZyQWtQ8lic7P6LDpOKidDhMIQIeVAKDvrqY12KXdATwhXWK9q-uL1AO3512eTtFyhs0OG_uHMBDHDeU8moclCkBOQM-O7shD9_-XGDY0BJm0OusIjJBfy7yp9Ujq-YEz37XXfXp8uLm_A2-evf67fn-CmsuSMYdH0RbC93zgQnbCi4EUZQYIqxqtbWNGkyvRU_B8L7voOC2Y4pCN7RGCct31Yuj7yGGLyukLG_DGn0ZKZko1o2ou_qeNaoZpPM25Kj04pKW-5bUgjNefn1Xnf2DVY6BxengwbrS_0vAjgIdQ0oRrDxEt6i4SUrkXfzyGL8s8ctf8cutiPhRlArZjxDvN_6P6ie6kbbZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667456484</pqid></control><display><type>article</type><title>Structural insight into PRMT5 inhibitors through amalgamating pharmacophore-based virtual screening, ADME toxicity, and binding energy studies to identify new inhibitors by molecular docking</title><source>SpringerLink</source><creator>Bathula, Revanth ; Lanka, Goverdhan ; Chakravarty, Madhulika ; Somadi, Gururaj ; Sivan, Sree Kanth ; Jain, Alok ; Potlapally, Sarita Rajender</creator><creatorcontrib>Bathula, Revanth ; Lanka, Goverdhan ; Chakravarty, Madhulika ; Somadi, Gururaj ; Sivan, Sree Kanth ; Jain, Alok ; Potlapally, Sarita Rajender</creatorcontrib><description>Protein arginine methyltransferase 5 (PRMT5) is a member of the methyltransferases family, a type-II arginine enzyme crucial for many cellular processes and associated with many cancer diseases. In this study, 2D QSAR study, pharmacophore-based 3D QSAR modeling, virtual screening, and binding free energy studies were carried out from a set of 61 reported potent compounds being inhibitors of PRMT5 protein. A five-point pharmacophore model (AADHR) was generated and this model is used to generate an atom-based 3-dimensional quantitative structure–activity relationship (3D QSAR). The obtained 3D QSAR model has better correlation coefficient ( R 2  = 0.91), cross-validation coefficient ( Q 2  = 0.82), F value (140.3), low RMSE (0.47), and Pearson R value (0.91). A library of 329,825 molecules (ChEMBL database) is screened with the pharmacophore model to retrieve hit molecules that are further subjected for molecular docking to identify best fit-active conformations binding at the receptor site of PRMT5 protein. Furthermore, we calculated ADME and toxicity properties using the QikProp module and pkCSM server. The lead molecules were prioritized by glide scores and binding free energy studies. Finally, we have evaluated the stability of protein–ligand complexes by performing an all-atom MD simulation in explicit solvent. MD results further strengthen our findings.</description><identifier>ISSN: 1040-0400</identifier><identifier>EISSN: 1572-9001</identifier><identifier>DOI: 10.1007/s11224-022-01918-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Binding energy ; Cancer ; Chemistry ; Chemistry and Materials Science ; Computer Applications in Chemistry ; Coordination compounds ; Correlation coefficients ; Force and energy ; Free energy ; Methyltransferases ; Molecular docking ; Oncology, Experimental ; Original Research ; Pharmacology ; Physical Chemistry ; Proteins ; Screening ; Stability analysis ; Theoretical and Computational Chemistry ; Three dimensional models ; Toxicity</subject><ispartof>Structural chemistry, 2022-08, Vol.33 (4), p.1223-1239</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-83b6746c93b26f763660a10d06fa7cff5abd9c691ed3998e9c6782a1e8b7da6f3</citedby><cites>FETCH-LOGICAL-c360t-83b6746c93b26f763660a10d06fa7cff5abd9c691ed3998e9c6782a1e8b7da6f3</cites><orcidid>0000-0002-6453-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11224-022-01918-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11224-022-01918-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bathula, Revanth</creatorcontrib><creatorcontrib>Lanka, Goverdhan</creatorcontrib><creatorcontrib>Chakravarty, Madhulika</creatorcontrib><creatorcontrib>Somadi, Gururaj</creatorcontrib><creatorcontrib>Sivan, Sree Kanth</creatorcontrib><creatorcontrib>Jain, Alok</creatorcontrib><creatorcontrib>Potlapally, Sarita Rajender</creatorcontrib><title>Structural insight into PRMT5 inhibitors through amalgamating pharmacophore-based virtual screening, ADME toxicity, and binding energy studies to identify new inhibitors by molecular docking</title><title>Structural chemistry</title><addtitle>Struct Chem</addtitle><description>Protein arginine methyltransferase 5 (PRMT5) is a member of the methyltransferases family, a type-II arginine enzyme crucial for many cellular processes and associated with many cancer diseases. In this study, 2D QSAR study, pharmacophore-based 3D QSAR modeling, virtual screening, and binding free energy studies were carried out from a set of 61 reported potent compounds being inhibitors of PRMT5 protein. A five-point pharmacophore model (AADHR) was generated and this model is used to generate an atom-based 3-dimensional quantitative structure–activity relationship (3D QSAR). The obtained 3D QSAR model has better correlation coefficient ( R 2  = 0.91), cross-validation coefficient ( Q 2  = 0.82), F value (140.3), low RMSE (0.47), and Pearson R value (0.91). A library of 329,825 molecules (ChEMBL database) is screened with the pharmacophore model to retrieve hit molecules that are further subjected for molecular docking to identify best fit-active conformations binding at the receptor site of PRMT5 protein. Furthermore, we calculated ADME and toxicity properties using the QikProp module and pkCSM server. The lead molecules were prioritized by glide scores and binding free energy studies. Finally, we have evaluated the stability of protein–ligand complexes by performing an all-atom MD simulation in explicit solvent. MD results further strengthen our findings.</description><subject>Binding energy</subject><subject>Cancer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Applications in Chemistry</subject><subject>Coordination compounds</subject><subject>Correlation coefficients</subject><subject>Force and energy</subject><subject>Free energy</subject><subject>Methyltransferases</subject><subject>Molecular docking</subject><subject>Oncology, Experimental</subject><subject>Original Research</subject><subject>Pharmacology</subject><subject>Physical Chemistry</subject><subject>Proteins</subject><subject>Screening</subject><subject>Stability analysis</subject><subject>Theoretical and Computational Chemistry</subject><subject>Three dimensional models</subject><subject>Toxicity</subject><issn>1040-0400</issn><issn>1572-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UV2L1TAULKLgevUP-BTwdbPmo03bx8u6q8Iuiq7PIU1O2qxtck1StX_O32bWK6yCSEjOcJiZc8hU1XNKzigh7ctEKWM1JoxhQnva4e1BdUKbluGeEPqwYFITXC55XD1J6bY0qeDNSfXjY46rzmtUM3I-uXHKpeaA3n-4vmkKnNzgcogJ5SmGdZyQWtQ8lic7P6LDpOKidDhMIQIeVAKDvrqY12KXdATwhXWK9q-uL1AO3512eTtFyhs0OG_uHMBDHDeU8moclCkBOQM-O7shD9_-XGDY0BJm0OusIjJBfy7yp9Ujq-YEz37XXfXp8uLm_A2-evf67fn-CmsuSMYdH0RbC93zgQnbCi4EUZQYIqxqtbWNGkyvRU_B8L7voOC2Y4pCN7RGCct31Yuj7yGGLyukLG_DGn0ZKZko1o2ou_qeNaoZpPM25Kj04pKW-5bUgjNefn1Xnf2DVY6BxengwbrS_0vAjgIdQ0oRrDxEt6i4SUrkXfzyGL8s8ctf8cutiPhRlArZjxDvN_6P6ie6kbbZ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bathula, Revanth</creator><creator>Lanka, Goverdhan</creator><creator>Chakravarty, Madhulika</creator><creator>Somadi, Gururaj</creator><creator>Sivan, Sree Kanth</creator><creator>Jain, Alok</creator><creator>Potlapally, Sarita Rajender</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6453-9705</orcidid></search><sort><creationdate>20220801</creationdate><title>Structural insight into PRMT5 inhibitors through amalgamating pharmacophore-based virtual screening, ADME toxicity, and binding energy studies to identify new inhibitors by molecular docking</title><author>Bathula, Revanth ; Lanka, Goverdhan ; Chakravarty, Madhulika ; Somadi, Gururaj ; Sivan, Sree Kanth ; Jain, Alok ; Potlapally, Sarita Rajender</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-83b6746c93b26f763660a10d06fa7cff5abd9c691ed3998e9c6782a1e8b7da6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding energy</topic><topic>Cancer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Applications in Chemistry</topic><topic>Coordination compounds</topic><topic>Correlation coefficients</topic><topic>Force and energy</topic><topic>Free energy</topic><topic>Methyltransferases</topic><topic>Molecular docking</topic><topic>Oncology, Experimental</topic><topic>Original Research</topic><topic>Pharmacology</topic><topic>Physical Chemistry</topic><topic>Proteins</topic><topic>Screening</topic><topic>Stability analysis</topic><topic>Theoretical and Computational Chemistry</topic><topic>Three dimensional models</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bathula, Revanth</creatorcontrib><creatorcontrib>Lanka, Goverdhan</creatorcontrib><creatorcontrib>Chakravarty, Madhulika</creatorcontrib><creatorcontrib>Somadi, Gururaj</creatorcontrib><creatorcontrib>Sivan, Sree Kanth</creatorcontrib><creatorcontrib>Jain, Alok</creatorcontrib><creatorcontrib>Potlapally, Sarita Rajender</creatorcontrib><collection>CrossRef</collection><jtitle>Structural chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bathula, Revanth</au><au>Lanka, Goverdhan</au><au>Chakravarty, Madhulika</au><au>Somadi, Gururaj</au><au>Sivan, Sree Kanth</au><au>Jain, Alok</au><au>Potlapally, Sarita Rajender</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insight into PRMT5 inhibitors through amalgamating pharmacophore-based virtual screening, ADME toxicity, and binding energy studies to identify new inhibitors by molecular docking</atitle><jtitle>Structural chemistry</jtitle><stitle>Struct Chem</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>33</volume><issue>4</issue><spage>1223</spage><epage>1239</epage><pages>1223-1239</pages><issn>1040-0400</issn><eissn>1572-9001</eissn><abstract>Protein arginine methyltransferase 5 (PRMT5) is a member of the methyltransferases family, a type-II arginine enzyme crucial for many cellular processes and associated with many cancer diseases. In this study, 2D QSAR study, pharmacophore-based 3D QSAR modeling, virtual screening, and binding free energy studies were carried out from a set of 61 reported potent compounds being inhibitors of PRMT5 protein. A five-point pharmacophore model (AADHR) was generated and this model is used to generate an atom-based 3-dimensional quantitative structure–activity relationship (3D QSAR). The obtained 3D QSAR model has better correlation coefficient ( R 2  = 0.91), cross-validation coefficient ( Q 2  = 0.82), F value (140.3), low RMSE (0.47), and Pearson R value (0.91). A library of 329,825 molecules (ChEMBL database) is screened with the pharmacophore model to retrieve hit molecules that are further subjected for molecular docking to identify best fit-active conformations binding at the receptor site of PRMT5 protein. Furthermore, we calculated ADME and toxicity properties using the QikProp module and pkCSM server. The lead molecules were prioritized by glide scores and binding free energy studies. Finally, we have evaluated the stability of protein–ligand complexes by performing an all-atom MD simulation in explicit solvent. MD results further strengthen our findings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11224-022-01918-y</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6453-9705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-0400
ispartof Structural chemistry, 2022-08, Vol.33 (4), p.1223-1239
issn 1040-0400
1572-9001
language eng
recordid cdi_proquest_journals_2667456484
source SpringerLink
subjects Binding energy
Cancer
Chemistry
Chemistry and Materials Science
Computer Applications in Chemistry
Coordination compounds
Correlation coefficients
Force and energy
Free energy
Methyltransferases
Molecular docking
Oncology, Experimental
Original Research
Pharmacology
Physical Chemistry
Proteins
Screening
Stability analysis
Theoretical and Computational Chemistry
Three dimensional models
Toxicity
title Structural insight into PRMT5 inhibitors through amalgamating pharmacophore-based virtual screening, ADME toxicity, and binding energy studies to identify new inhibitors by molecular docking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insight%20into%20PRMT5%20inhibitors%20through%20amalgamating%20pharmacophore-based%20virtual%20screening,%20ADME%20toxicity,%20and%20binding%20energy%20studies%20to%20identify%20new%20inhibitors%20by%20molecular%20docking&rft.jtitle=Structural%20chemistry&rft.au=Bathula,%20Revanth&rft.date=2022-08-01&rft.volume=33&rft.issue=4&rft.spage=1223&rft.epage=1239&rft.pages=1223-1239&rft.issn=1040-0400&rft.eissn=1572-9001&rft_id=info:doi/10.1007/s11224-022-01918-y&rft_dat=%3Cgale_proqu%3EA704632316%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667456484&rft_id=info:pmid/&rft_galeid=A704632316&rfr_iscdi=true