Three-layer phase-field model of finite strain shell for simulating quasi-static and dynamic fracture of elasto-plastic materials

•A new three-layer phase-field model for elasto-plastic materials based on the crack regularized phase-field model is proposed.•Five typical numerical examples are solved by the proposed phase-field model.•The three-layer phase-field model can better explain the differences in the response of thick-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2022-05, Vol.267, p.108435, Article 108435
Hauptverfasser: Wang, Tao, Han, Haoyue, Huang, Guangyan, Liu, Zhanli, Zhuang, Zhuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108435
container_title Engineering fracture mechanics
container_volume 267
creator Wang, Tao
Han, Haoyue
Huang, Guangyan
Liu, Zhanli
Zhuang, Zhuo
description •A new three-layer phase-field model for elasto-plastic materials based on the crack regularized phase-field model is proposed.•Five typical numerical examples are solved by the proposed phase-field model.•The three-layer phase-field model can better explain the differences in the response of thick-walled shells on different layers under quasi-static and dynamic loading in the thickness direction. Shell structures are widely used in the aerospace, automobile, pipeline, and construction industries. Under quasi-static and dynamic loading, the failure modes of the thin and thick shells are quite different. To explain the correct fracture behavior of the moderated thick shell under bending loads, this paper proposed a new three-layer phase-field model for elasto-plastic materials based on the crack regularized phase-field model. Three independent phase-fields corresponding to the shell’s upper, middle, and lower surfaces are used. This provides a realistic behavior in bending-dominated problems, which is illustrated in the classical beam and plate problems. Five typical numerical examples are given, including the bending of bi-clamped beam, the Muscat-Fenech and Atkins plate problem, the dynamic crack growth problem in a stiffened cylinder under internal pressure, the radial cracks problem in perforated sheets, and the circular steel plate subjected to an underwater blast load. All the problems have been successfully solved, and the proposed phase-field model is proved to be effective.
doi_str_mv 10.1016/j.engfracmech.2022.108435
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667262619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794422001862</els_id><sourcerecordid>2667262619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-788557d83a9a8f86d3af29b546a1527a8b1eef4ed3702bd1441bf82114c6e20e3</originalsourceid><addsrcrecordid>eNqNUMtOIzEQtBBIhMc_GO15gu2ZsT3HVQTsSkhc4Gx17DZxNI9ge5By5M_Xo-yBI6eqflV3FyF3nK054_J-v8bx3UewA9rdWjAhSl43dXtGVlyrulI1b8_JijFeeNc0l-QqpT1jTEnNVuTrdRcRqx6OGOlhBwkrH7B3dJgc9nTy1IcxZKQpRwgjTTvse-qnSFMY5h5yGN_pxwwpVCmXyFIYHXXHEYbCl8PyHHHRwR5SnqrDAqU0QMYYoE835MIXwNv_eE3eHh9eN3-q55env5vfz5UVqsuV0rptldM1dKC9lq4GL7pt20jgrVCgtxzRN-hqxcTW8abhW68F542VKBjW1-TXSfcQp48ZUzb7aY5jWWmElEpIIXlXurpTl41TShG9OcQwQDwazsziuNmbb46bxXFzcrzMbk6zWN74DBhNsgFHiy5EtNm4KfxA5R-y45Hf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667262619</pqid></control><display><type>article</type><title>Three-layer phase-field model of finite strain shell for simulating quasi-static and dynamic fracture of elasto-plastic materials</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Tao ; Han, Haoyue ; Huang, Guangyan ; Liu, Zhanli ; Zhuang, Zhuo</creator><creatorcontrib>Wang, Tao ; Han, Haoyue ; Huang, Guangyan ; Liu, Zhanli ; Zhuang, Zhuo</creatorcontrib><description>•A new three-layer phase-field model for elasto-plastic materials based on the crack regularized phase-field model is proposed.•Five typical numerical examples are solved by the proposed phase-field model.•The three-layer phase-field model can better explain the differences in the response of thick-walled shells on different layers under quasi-static and dynamic loading in the thickness direction. Shell structures are widely used in the aerospace, automobile, pipeline, and construction industries. Under quasi-static and dynamic loading, the failure modes of the thin and thick shells are quite different. To explain the correct fracture behavior of the moderated thick shell under bending loads, this paper proposed a new three-layer phase-field model for elasto-plastic materials based on the crack regularized phase-field model. Three independent phase-fields corresponding to the shell’s upper, middle, and lower surfaces are used. This provides a realistic behavior in bending-dominated problems, which is illustrated in the classical beam and plate problems. Five typical numerical examples are given, including the bending of bi-clamped beam, the Muscat-Fenech and Atkins plate problem, the dynamic crack growth problem in a stiffened cylinder under internal pressure, the radial cracks problem in perforated sheets, and the circular steel plate subjected to an underwater blast load. All the problems have been successfully solved, and the proposed phase-field model is proved to be effective.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2022.108435</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Bending ; Blast loads ; Construction industry ; Crack propagation ; Ductile fracture ; Dynamic loads ; Failure modes ; Finite strain shell ; Internal pressure ; Johnson-Cook model ; Metal sheets ; Shells (structural forms) ; Steel plates ; Three-layer phase-field model</subject><ispartof>Engineering fracture mechanics, 2022-05, Vol.267, p.108435, Article 108435</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-788557d83a9a8f86d3af29b546a1527a8b1eef4ed3702bd1441bf82114c6e20e3</citedby><cites>FETCH-LOGICAL-c279t-788557d83a9a8f86d3af29b546a1527a8b1eef4ed3702bd1441bf82114c6e20e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794422001862$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Han, Haoyue</creatorcontrib><creatorcontrib>Huang, Guangyan</creatorcontrib><creatorcontrib>Liu, Zhanli</creatorcontrib><creatorcontrib>Zhuang, Zhuo</creatorcontrib><title>Three-layer phase-field model of finite strain shell for simulating quasi-static and dynamic fracture of elasto-plastic materials</title><title>Engineering fracture mechanics</title><description>•A new three-layer phase-field model for elasto-plastic materials based on the crack regularized phase-field model is proposed.•Five typical numerical examples are solved by the proposed phase-field model.•The three-layer phase-field model can better explain the differences in the response of thick-walled shells on different layers under quasi-static and dynamic loading in the thickness direction. Shell structures are widely used in the aerospace, automobile, pipeline, and construction industries. Under quasi-static and dynamic loading, the failure modes of the thin and thick shells are quite different. To explain the correct fracture behavior of the moderated thick shell under bending loads, this paper proposed a new three-layer phase-field model for elasto-plastic materials based on the crack regularized phase-field model. Three independent phase-fields corresponding to the shell’s upper, middle, and lower surfaces are used. This provides a realistic behavior in bending-dominated problems, which is illustrated in the classical beam and plate problems. Five typical numerical examples are given, including the bending of bi-clamped beam, the Muscat-Fenech and Atkins plate problem, the dynamic crack growth problem in a stiffened cylinder under internal pressure, the radial cracks problem in perforated sheets, and the circular steel plate subjected to an underwater blast load. All the problems have been successfully solved, and the proposed phase-field model is proved to be effective.</description><subject>Bending</subject><subject>Blast loads</subject><subject>Construction industry</subject><subject>Crack propagation</subject><subject>Ductile fracture</subject><subject>Dynamic loads</subject><subject>Failure modes</subject><subject>Finite strain shell</subject><subject>Internal pressure</subject><subject>Johnson-Cook model</subject><subject>Metal sheets</subject><subject>Shells (structural forms)</subject><subject>Steel plates</subject><subject>Three-layer phase-field model</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOIzEQtBBIhMc_GO15gu2ZsT3HVQTsSkhc4Gx17DZxNI9ge5By5M_Xo-yBI6eqflV3FyF3nK054_J-v8bx3UewA9rdWjAhSl43dXtGVlyrulI1b8_JijFeeNc0l-QqpT1jTEnNVuTrdRcRqx6OGOlhBwkrH7B3dJgc9nTy1IcxZKQpRwgjTTvse-qnSFMY5h5yGN_pxwwpVCmXyFIYHXXHEYbCl8PyHHHRwR5SnqrDAqU0QMYYoE835MIXwNv_eE3eHh9eN3-q55env5vfz5UVqsuV0rptldM1dKC9lq4GL7pt20jgrVCgtxzRN-hqxcTW8abhW68F542VKBjW1-TXSfcQp48ZUzb7aY5jWWmElEpIIXlXurpTl41TShG9OcQwQDwazsziuNmbb46bxXFzcrzMbk6zWN74DBhNsgFHiy5EtNm4KfxA5R-y45Hf</recordid><startdate>20220515</startdate><enddate>20220515</enddate><creator>Wang, Tao</creator><creator>Han, Haoyue</creator><creator>Huang, Guangyan</creator><creator>Liu, Zhanli</creator><creator>Zhuang, Zhuo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20220515</creationdate><title>Three-layer phase-field model of finite strain shell for simulating quasi-static and dynamic fracture of elasto-plastic materials</title><author>Wang, Tao ; Han, Haoyue ; Huang, Guangyan ; Liu, Zhanli ; Zhuang, Zhuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-788557d83a9a8f86d3af29b546a1527a8b1eef4ed3702bd1441bf82114c6e20e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bending</topic><topic>Blast loads</topic><topic>Construction industry</topic><topic>Crack propagation</topic><topic>Ductile fracture</topic><topic>Dynamic loads</topic><topic>Failure modes</topic><topic>Finite strain shell</topic><topic>Internal pressure</topic><topic>Johnson-Cook model</topic><topic>Metal sheets</topic><topic>Shells (structural forms)</topic><topic>Steel plates</topic><topic>Three-layer phase-field model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Han, Haoyue</creatorcontrib><creatorcontrib>Huang, Guangyan</creatorcontrib><creatorcontrib>Liu, Zhanli</creatorcontrib><creatorcontrib>Zhuang, Zhuo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tao</au><au>Han, Haoyue</au><au>Huang, Guangyan</au><au>Liu, Zhanli</au><au>Zhuang, Zhuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-layer phase-field model of finite strain shell for simulating quasi-static and dynamic fracture of elasto-plastic materials</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2022-05-15</date><risdate>2022</risdate><volume>267</volume><spage>108435</spage><pages>108435-</pages><artnum>108435</artnum><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•A new three-layer phase-field model for elasto-plastic materials based on the crack regularized phase-field model is proposed.•Five typical numerical examples are solved by the proposed phase-field model.•The three-layer phase-field model can better explain the differences in the response of thick-walled shells on different layers under quasi-static and dynamic loading in the thickness direction. Shell structures are widely used in the aerospace, automobile, pipeline, and construction industries. Under quasi-static and dynamic loading, the failure modes of the thin and thick shells are quite different. To explain the correct fracture behavior of the moderated thick shell under bending loads, this paper proposed a new three-layer phase-field model for elasto-plastic materials based on the crack regularized phase-field model. Three independent phase-fields corresponding to the shell’s upper, middle, and lower surfaces are used. This provides a realistic behavior in bending-dominated problems, which is illustrated in the classical beam and plate problems. Five typical numerical examples are given, including the bending of bi-clamped beam, the Muscat-Fenech and Atkins plate problem, the dynamic crack growth problem in a stiffened cylinder under internal pressure, the radial cracks problem in perforated sheets, and the circular steel plate subjected to an underwater blast load. All the problems have been successfully solved, and the proposed phase-field model is proved to be effective.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2022.108435</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2022-05, Vol.267, p.108435, Article 108435
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_2667262619
source Elsevier ScienceDirect Journals
subjects Bending
Blast loads
Construction industry
Crack propagation
Ductile fracture
Dynamic loads
Failure modes
Finite strain shell
Internal pressure
Johnson-Cook model
Metal sheets
Shells (structural forms)
Steel plates
Three-layer phase-field model
title Three-layer phase-field model of finite strain shell for simulating quasi-static and dynamic fracture of elasto-plastic materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-layer%20phase-field%20model%20of%20finite%20strain%20shell%20for%20simulating%20quasi-static%20and%20dynamic%20fracture%20of%20elasto-plastic%20materials&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Wang,%20Tao&rft.date=2022-05-15&rft.volume=267&rft.spage=108435&rft.pages=108435-&rft.artnum=108435&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2022.108435&rft_dat=%3Cproquest_cross%3E2667262619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667262619&rft_id=info:pmid/&rft_els_id=S0013794422001862&rfr_iscdi=true