Open-cell aluminum foams with bimodal pore size distributions for emerging thermal management applications

•Replication is used to fabricate open-cell aluminum foams with bimodal cell size.•Coarse (C – 7 mm) and fine (F – 1 mm) cells are combined in different proportions.•The foam containing 67%C-33%F (C67F33) has a remarkable total porosity of 76%.•C67F33 exhibits the highest heat transfer coefficient a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2022-08, Vol.191, p.122852, Article 122852
Hauptverfasser: Durmus, F.Ç., Maiorano, L.P., Molina, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122852
container_title International journal of heat and mass transfer
container_volume 191
creator Durmus, F.Ç.
Maiorano, L.P.
Molina, J.M.
description •Replication is used to fabricate open-cell aluminum foams with bimodal cell size.•Coarse (C – 7 mm) and fine (F – 1 mm) cells are combined in different proportions.•The foam containing 67%C-33%F (C67F33) has a remarkable total porosity of 76%.•C67F33 exhibits the highest heat transfer coefficient and the lowest pressure drop.•C67F33 shows excellent thermal efficiency and great potential in thermal management. Recent advances in cellular materials for active thermal management applications involve the integral design of their porous structure. In this work, open-cell aluminum foams with porosities in the range of 0.60–0.76 are developed, containing pores with spherical geometry and a bimodal pore size distribution. The fabrication strategy involves the use of the replication method by infiltration with liquid aluminum of porous preforms formed by packing NaCl spheres of two largely different sizes (7 mm and 1 mm average diameter), which are then removed by water dissolution. The paper describes cellular materials with different proportions of coarse and fine pores. Their detailed characterization by pore volume fraction, pressure drop, permeability, thermal conductivity and heat transfer coefficient is supported by analytical schemes. In addition, these materials were characterized under realistic operating conditions using computational fluid dynamics simulations. The material with 67 percent coarse pores and 33 percent fine pores, which has the highest porosity (and thus permeability), has the most appealing heat dissipation properties with the lowest pressure drops, making it an excellent candidate for emerging thermal management applications in electronic systems. [Display omitted]
doi_str_mv 10.1016/j.ijheatmasstransfer.2022.122852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667262333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931022003349</els_id><sourcerecordid>2667262333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-6805ca05186cb4b9d327cb34f8609743ece77c70eea44ef6fc2d185900c018583</originalsourceid><addsrcrecordid>eNqNkD9PwzAQxS0EEqXwHSyxsKTYTuo4G6jiryp1gdlynEvrKHaC7YDg0-NSNhZuOd3d0-_pHkJXlCwoofy6W5huBypaFUL0yoUW_IIRxhaUMbFkR2hGRVlljIrqGM0IoWVW5ZScorMQuv1ICj5D3WYEl2noe6z6yRo3WdwOygb8YeIO18YOjerxOHjAwXwBbkyyM_UUzeBCknoMFvzWuC2OO_A2ia1yapu2LmI1jr3R6kd8jk5a1Qe4-O1z9Hp_97J6zNabh6fV7TrTBRMx44IstSJLKriui7pqclbqOi9awUlVFjloKEtdEgBVFNDyVrOGimVFiCapi3yOLg_c0Q9vE4Qou2HyLllKxnnJOMtTzdHNQaX9EIKHVo7eWOU_JSVyn7Ds5N-E5T5heUg4IZ4PCEjfvJt0DdqA09AYDzrKZjD_h30DjyuTEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667262333</pqid></control><display><type>article</type><title>Open-cell aluminum foams with bimodal pore size distributions for emerging thermal management applications</title><source>Elsevier ScienceDirect Journals</source><creator>Durmus, F.Ç. ; Maiorano, L.P. ; Molina, J.M.</creator><creatorcontrib>Durmus, F.Ç. ; Maiorano, L.P. ; Molina, J.M.</creatorcontrib><description>•Replication is used to fabricate open-cell aluminum foams with bimodal cell size.•Coarse (C – 7 mm) and fine (F – 1 mm) cells are combined in different proportions.•The foam containing 67%C-33%F (C67F33) has a remarkable total porosity of 76%.•C67F33 exhibits the highest heat transfer coefficient and the lowest pressure drop.•C67F33 shows excellent thermal efficiency and great potential in thermal management. Recent advances in cellular materials for active thermal management applications involve the integral design of their porous structure. In this work, open-cell aluminum foams with porosities in the range of 0.60–0.76 are developed, containing pores with spherical geometry and a bimodal pore size distribution. The fabrication strategy involves the use of the replication method by infiltration with liquid aluminum of porous preforms formed by packing NaCl spheres of two largely different sizes (7 mm and 1 mm average diameter), which are then removed by water dissolution. The paper describes cellular materials with different proportions of coarse and fine pores. Their detailed characterization by pore volume fraction, pressure drop, permeability, thermal conductivity and heat transfer coefficient is supported by analytical schemes. In addition, these materials were characterized under realistic operating conditions using computational fluid dynamics simulations. The material with 67 percent coarse pores and 33 percent fine pores, which has the highest porosity (and thus permeability), has the most appealing heat dissipation properties with the lowest pressure drops, making it an excellent candidate for emerging thermal management applications in electronic systems. [Display omitted]</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2022.122852</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum ; Bimodal porosity ; Computational fluid dynamics ; Electronic systems ; Heat transfer ; Heat transfer coefficients ; Metal foams ; Open cell porosity ; Open-cell foam ; Permeability ; Pore size ; Pore size distribution ; Porosity ; Preforms ; Pressure drop ; Replication ; Thermal conductivity ; Thermal management</subject><ispartof>International journal of heat and mass transfer, 2022-08, Vol.191, p.122852, Article 122852</ispartof><rights>2022 The Author(s)</rights><rights>Copyright Elsevier BV Aug 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-6805ca05186cb4b9d327cb34f8609743ece77c70eea44ef6fc2d185900c018583</citedby><cites>FETCH-LOGICAL-c428t-6805ca05186cb4b9d327cb34f8609743ece77c70eea44ef6fc2d185900c018583</cites><orcidid>0000-0002-5236-6923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931022003349$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Durmus, F.Ç.</creatorcontrib><creatorcontrib>Maiorano, L.P.</creatorcontrib><creatorcontrib>Molina, J.M.</creatorcontrib><title>Open-cell aluminum foams with bimodal pore size distributions for emerging thermal management applications</title><title>International journal of heat and mass transfer</title><description>•Replication is used to fabricate open-cell aluminum foams with bimodal cell size.•Coarse (C – 7 mm) and fine (F – 1 mm) cells are combined in different proportions.•The foam containing 67%C-33%F (C67F33) has a remarkable total porosity of 76%.•C67F33 exhibits the highest heat transfer coefficient and the lowest pressure drop.•C67F33 shows excellent thermal efficiency and great potential in thermal management. Recent advances in cellular materials for active thermal management applications involve the integral design of their porous structure. In this work, open-cell aluminum foams with porosities in the range of 0.60–0.76 are developed, containing pores with spherical geometry and a bimodal pore size distribution. The fabrication strategy involves the use of the replication method by infiltration with liquid aluminum of porous preforms formed by packing NaCl spheres of two largely different sizes (7 mm and 1 mm average diameter), which are then removed by water dissolution. The paper describes cellular materials with different proportions of coarse and fine pores. Their detailed characterization by pore volume fraction, pressure drop, permeability, thermal conductivity and heat transfer coefficient is supported by analytical schemes. In addition, these materials were characterized under realistic operating conditions using computational fluid dynamics simulations. The material with 67 percent coarse pores and 33 percent fine pores, which has the highest porosity (and thus permeability), has the most appealing heat dissipation properties with the lowest pressure drops, making it an excellent candidate for emerging thermal management applications in electronic systems. [Display omitted]</description><subject>Aluminum</subject><subject>Bimodal porosity</subject><subject>Computational fluid dynamics</subject><subject>Electronic systems</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Metal foams</subject><subject>Open cell porosity</subject><subject>Open-cell foam</subject><subject>Permeability</subject><subject>Pore size</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>Preforms</subject><subject>Pressure drop</subject><subject>Replication</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkD9PwzAQxS0EEqXwHSyxsKTYTuo4G6jiryp1gdlynEvrKHaC7YDg0-NSNhZuOd3d0-_pHkJXlCwoofy6W5huBypaFUL0yoUW_IIRxhaUMbFkR2hGRVlljIrqGM0IoWVW5ZScorMQuv1ICj5D3WYEl2noe6z6yRo3WdwOygb8YeIO18YOjerxOHjAwXwBbkyyM_UUzeBCknoMFvzWuC2OO_A2ia1yapu2LmI1jr3R6kd8jk5a1Qe4-O1z9Hp_97J6zNabh6fV7TrTBRMx44IstSJLKriui7pqclbqOi9awUlVFjloKEtdEgBVFNDyVrOGimVFiCapi3yOLg_c0Q9vE4Qou2HyLllKxnnJOMtTzdHNQaX9EIKHVo7eWOU_JSVyn7Ds5N-E5T5heUg4IZ4PCEjfvJt0DdqA09AYDzrKZjD_h30DjyuTEQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Durmus, F.Ç.</creator><creator>Maiorano, L.P.</creator><creator>Molina, J.M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5236-6923</orcidid></search><sort><creationdate>20220801</creationdate><title>Open-cell aluminum foams with bimodal pore size distributions for emerging thermal management applications</title><author>Durmus, F.Ç. ; Maiorano, L.P. ; Molina, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-6805ca05186cb4b9d327cb34f8609743ece77c70eea44ef6fc2d185900c018583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Bimodal porosity</topic><topic>Computational fluid dynamics</topic><topic>Electronic systems</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Metal foams</topic><topic>Open cell porosity</topic><topic>Open-cell foam</topic><topic>Permeability</topic><topic>Pore size</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>Preforms</topic><topic>Pressure drop</topic><topic>Replication</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durmus, F.Ç.</creatorcontrib><creatorcontrib>Maiorano, L.P.</creatorcontrib><creatorcontrib>Molina, J.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durmus, F.Ç.</au><au>Maiorano, L.P.</au><au>Molina, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-cell aluminum foams with bimodal pore size distributions for emerging thermal management applications</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>191</volume><spage>122852</spage><pages>122852-</pages><artnum>122852</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Replication is used to fabricate open-cell aluminum foams with bimodal cell size.•Coarse (C – 7 mm) and fine (F – 1 mm) cells are combined in different proportions.•The foam containing 67%C-33%F (C67F33) has a remarkable total porosity of 76%.•C67F33 exhibits the highest heat transfer coefficient and the lowest pressure drop.•C67F33 shows excellent thermal efficiency and great potential in thermal management. Recent advances in cellular materials for active thermal management applications involve the integral design of their porous structure. In this work, open-cell aluminum foams with porosities in the range of 0.60–0.76 are developed, containing pores with spherical geometry and a bimodal pore size distribution. The fabrication strategy involves the use of the replication method by infiltration with liquid aluminum of porous preforms formed by packing NaCl spheres of two largely different sizes (7 mm and 1 mm average diameter), which are then removed by water dissolution. The paper describes cellular materials with different proportions of coarse and fine pores. Their detailed characterization by pore volume fraction, pressure drop, permeability, thermal conductivity and heat transfer coefficient is supported by analytical schemes. In addition, these materials were characterized under realistic operating conditions using computational fluid dynamics simulations. The material with 67 percent coarse pores and 33 percent fine pores, which has the highest porosity (and thus permeability), has the most appealing heat dissipation properties with the lowest pressure drops, making it an excellent candidate for emerging thermal management applications in electronic systems. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2022.122852</doi><orcidid>https://orcid.org/0000-0002-5236-6923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2022-08, Vol.191, p.122852, Article 122852
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2667262333
source Elsevier ScienceDirect Journals
subjects Aluminum
Bimodal porosity
Computational fluid dynamics
Electronic systems
Heat transfer
Heat transfer coefficients
Metal foams
Open cell porosity
Open-cell foam
Permeability
Pore size
Pore size distribution
Porosity
Preforms
Pressure drop
Replication
Thermal conductivity
Thermal management
title Open-cell aluminum foams with bimodal pore size distributions for emerging thermal management applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-cell%20aluminum%20foams%20with%20bimodal%20pore%20size%20distributions%20for%20emerging%20thermal%20management%20applications&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Durmus,%20F.%C3%87.&rft.date=2022-08-01&rft.volume=191&rft.spage=122852&rft.pages=122852-&rft.artnum=122852&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2022.122852&rft_dat=%3Cproquest_cross%3E2667262333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667262333&rft_id=info:pmid/&rft_els_id=S0017931022003349&rfr_iscdi=true