Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant

Machine learning based strategies have been increasingly applied in materials science to accelerate the discovery process. Regression algorithm learns the mapping from compositions/features to targeted property and makes prediction for unknown compositions. The quality of features, in some degree, d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-07, Vol.908, p.164468, Article 164468
Hauptverfasser: Yuan, Ruihao, Xue, Deqing, Xu, Yangyang, Xue, Dezhen, Li, Jinshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 164468
container_title Journal of alloys and compounds
container_volume 908
creator Yuan, Ruihao
Xue, Deqing
Xu, Yangyang
Xue, Dezhen
Li, Jinshan
description Machine learning based strategies have been increasingly applied in materials science to accelerate the discovery process. Regression algorithm learns the mapping from compositions/features to targeted property and makes prediction for unknown compositions. The quality of features, in some degree, determines the upper limit of the surrogate model performance and the associated search efficiency for desired candidates. We herein propose a data-driven framework combining feature engineering, machine learning, experimental design and synthesis, to optimize the piezoelectric constant of BaTiO3 based ceramics, with the emphasis on feature engineering realized by four strategies. The search for improved piezoelectric constant in the initial data set behaves differently compared to that in the whole unknown space, indicating that the initial data set might be biased to a local scheme. The best composition with a piezoelectric constant of ~ 430 pC/N is synthesized in the second iteration, better than the majority in the initial data set. Insight for the change of piezoelectric constant for the newly synthesized 12 compositions is provided by examining the corresponding evolution of dielectric permittivity within the thermodynamic theory. •The four different feature engineering methods give rise to similar machine learning model.•The search for improved piezoelectric constant in the initial data set behaves differently to that in the whole unknown space.•The enhanced piezoelectric constants are attributed to the improved dielectric permittivity.
doi_str_mv 10.1016/j.jallcom.2022.164468
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667261743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838822008593</els_id><sourcerecordid>2667261743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ca14be042b52b816e33fc929166f29d5c9457074f99c8a571509747f6ed54fa53</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5AscU7x2_EJAeIlgbiUs-U4m9ZRmhQ75fXrcRXunFba_WZWMwidU7KghKrLdtG6rvPDZsEIYwuqhFDlAZrRUvNCKGUO0YwYJouSl-UxOkmpJYRQw-kMfb04vw494A5c7EO_wtmnyosaf4ZxjRtw4y4Chn6VlxD3xDjglGmfr0PEN24ZXjmuXMoaD9Ftgk-TuHNxBXgb4GeADvwYg8_2fRpdP56io8Z1Cc7-5hy93d8tbx-L59eHp9vr58JzrsfCOyoqIIJVklUlVcB54w0zVKmGmVp6I6QmWjTG-NJJTSUxWuhGQS1F4ySfo4vJdxuH9x2k0bbDLvb5pWVKaaaoFjxTcqJ8HFKK0NhtDBsXvy0ldl-ybe1fyXZfsp1KzrqrSQc5wkeAaJMP0HuoQ8yBbT2Efxx-Aej7iQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667261743</pqid></control><display><type>article</type><title>Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yuan, Ruihao ; Xue, Deqing ; Xu, Yangyang ; Xue, Dezhen ; Li, Jinshan</creator><creatorcontrib>Yuan, Ruihao ; Xue, Deqing ; Xu, Yangyang ; Xue, Dezhen ; Li, Jinshan</creatorcontrib><description>Machine learning based strategies have been increasingly applied in materials science to accelerate the discovery process. Regression algorithm learns the mapping from compositions/features to targeted property and makes prediction for unknown compositions. The quality of features, in some degree, determines the upper limit of the surrogate model performance and the associated search efficiency for desired candidates. We herein propose a data-driven framework combining feature engineering, machine learning, experimental design and synthesis, to optimize the piezoelectric constant of BaTiO3 based ceramics, with the emphasis on feature engineering realized by four strategies. The search for improved piezoelectric constant in the initial data set behaves differently compared to that in the whole unknown space, indicating that the initial data set might be biased to a local scheme. The best composition with a piezoelectric constant of ~ 430 pC/N is synthesized in the second iteration, better than the majority in the initial data set. Insight for the change of piezoelectric constant for the newly synthesized 12 compositions is provided by examining the corresponding evolution of dielectric permittivity within the thermodynamic theory. •The four different feature engineering methods give rise to similar machine learning model.•The search for improved piezoelectric constant in the initial data set behaves differently to that in the whole unknown space.•The enhanced piezoelectric constants are attributed to the improved dielectric permittivity.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.164468</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithms ; Barium titanates ; Ceramics ; Composition ; Datasets ; Design of experiments ; Design optimization ; Experimental design ; Feature engineering ; Iterative methods ; Machine learning ; Materials science ; Piezoelectric constant ; Piezoelectricity ; Searching ; Synthesis</subject><ispartof>Journal of alloys and compounds, 2022-07, Vol.908, p.164468, Article 164468</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ca14be042b52b816e33fc929166f29d5c9457074f99c8a571509747f6ed54fa53</citedby><cites>FETCH-LOGICAL-c337t-ca14be042b52b816e33fc929166f29d5c9457074f99c8a571509747f6ed54fa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2022.164468$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yuan, Ruihao</creatorcontrib><creatorcontrib>Xue, Deqing</creatorcontrib><creatorcontrib>Xu, Yangyang</creatorcontrib><creatorcontrib>Xue, Dezhen</creatorcontrib><creatorcontrib>Li, Jinshan</creatorcontrib><title>Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant</title><title>Journal of alloys and compounds</title><description>Machine learning based strategies have been increasingly applied in materials science to accelerate the discovery process. Regression algorithm learns the mapping from compositions/features to targeted property and makes prediction for unknown compositions. The quality of features, in some degree, determines the upper limit of the surrogate model performance and the associated search efficiency for desired candidates. We herein propose a data-driven framework combining feature engineering, machine learning, experimental design and synthesis, to optimize the piezoelectric constant of BaTiO3 based ceramics, with the emphasis on feature engineering realized by four strategies. The search for improved piezoelectric constant in the initial data set behaves differently compared to that in the whole unknown space, indicating that the initial data set might be biased to a local scheme. The best composition with a piezoelectric constant of ~ 430 pC/N is synthesized in the second iteration, better than the majority in the initial data set. Insight for the change of piezoelectric constant for the newly synthesized 12 compositions is provided by examining the corresponding evolution of dielectric permittivity within the thermodynamic theory. •The four different feature engineering methods give rise to similar machine learning model.•The search for improved piezoelectric constant in the initial data set behaves differently to that in the whole unknown space.•The enhanced piezoelectric constants are attributed to the improved dielectric permittivity.</description><subject>Algorithms</subject><subject>Barium titanates</subject><subject>Ceramics</subject><subject>Composition</subject><subject>Datasets</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Experimental design</subject><subject>Feature engineering</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Materials science</subject><subject>Piezoelectric constant</subject><subject>Piezoelectricity</subject><subject>Searching</subject><subject>Synthesis</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5AscU7x2_EJAeIlgbiUs-U4m9ZRmhQ75fXrcRXunFba_WZWMwidU7KghKrLdtG6rvPDZsEIYwuqhFDlAZrRUvNCKGUO0YwYJouSl-UxOkmpJYRQw-kMfb04vw494A5c7EO_wtmnyosaf4ZxjRtw4y4Chn6VlxD3xDjglGmfr0PEN24ZXjmuXMoaD9Ftgk-TuHNxBXgb4GeADvwYg8_2fRpdP56io8Z1Cc7-5hy93d8tbx-L59eHp9vr58JzrsfCOyoqIIJVklUlVcB54w0zVKmGmVp6I6QmWjTG-NJJTSUxWuhGQS1F4ySfo4vJdxuH9x2k0bbDLvb5pWVKaaaoFjxTcqJ8HFKK0NhtDBsXvy0ldl-ybe1fyXZfsp1KzrqrSQc5wkeAaJMP0HuoQ8yBbT2Efxx-Aej7iQU</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Yuan, Ruihao</creator><creator>Xue, Deqing</creator><creator>Xu, Yangyang</creator><creator>Xue, Dezhen</creator><creator>Li, Jinshan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220705</creationdate><title>Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant</title><author>Yuan, Ruihao ; Xue, Deqing ; Xu, Yangyang ; Xue, Dezhen ; Li, Jinshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ca14be042b52b816e33fc929166f29d5c9457074f99c8a571509747f6ed54fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Barium titanates</topic><topic>Ceramics</topic><topic>Composition</topic><topic>Datasets</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Experimental design</topic><topic>Feature engineering</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Materials science</topic><topic>Piezoelectric constant</topic><topic>Piezoelectricity</topic><topic>Searching</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Ruihao</creatorcontrib><creatorcontrib>Xue, Deqing</creatorcontrib><creatorcontrib>Xu, Yangyang</creatorcontrib><creatorcontrib>Xue, Dezhen</creatorcontrib><creatorcontrib>Li, Jinshan</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Ruihao</au><au>Xue, Deqing</au><au>Xu, Yangyang</au><au>Xue, Dezhen</au><au>Li, Jinshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>908</volume><spage>164468</spage><pages>164468-</pages><artnum>164468</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Machine learning based strategies have been increasingly applied in materials science to accelerate the discovery process. Regression algorithm learns the mapping from compositions/features to targeted property and makes prediction for unknown compositions. The quality of features, in some degree, determines the upper limit of the surrogate model performance and the associated search efficiency for desired candidates. We herein propose a data-driven framework combining feature engineering, machine learning, experimental design and synthesis, to optimize the piezoelectric constant of BaTiO3 based ceramics, with the emphasis on feature engineering realized by four strategies. The search for improved piezoelectric constant in the initial data set behaves differently compared to that in the whole unknown space, indicating that the initial data set might be biased to a local scheme. The best composition with a piezoelectric constant of ~ 430 pC/N is synthesized in the second iteration, better than the majority in the initial data set. Insight for the change of piezoelectric constant for the newly synthesized 12 compositions is provided by examining the corresponding evolution of dielectric permittivity within the thermodynamic theory. •The four different feature engineering methods give rise to similar machine learning model.•The search for improved piezoelectric constant in the initial data set behaves differently to that in the whole unknown space.•The enhanced piezoelectric constants are attributed to the improved dielectric permittivity.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2022.164468</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-07, Vol.908, p.164468, Article 164468
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2667261743
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Barium titanates
Ceramics
Composition
Datasets
Design of experiments
Design optimization
Experimental design
Feature engineering
Iterative methods
Machine learning
Materials science
Piezoelectric constant
Piezoelectricity
Searching
Synthesis
title Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20combined%20with%20feature%20engineering%20to%20search%20for%20BaTiO3%20based%20ceramics%20with%20large%20piezoelectric%20constant&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Yuan,%20Ruihao&rft.date=2022-07-05&rft.volume=908&rft.spage=164468&rft.pages=164468-&rft.artnum=164468&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.164468&rft_dat=%3Cproquest_cross%3E2667261743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667261743&rft_id=info:pmid/&rft_els_id=S0925838822008593&rfr_iscdi=true