Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant
Machine learning based strategies have been increasingly applied in materials science to accelerate the discovery process. Regression algorithm learns the mapping from compositions/features to targeted property and makes prediction for unknown compositions. The quality of features, in some degree, d...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2022-07, Vol.908, p.164468, Article 164468 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 164468 |
container_title | Journal of alloys and compounds |
container_volume | 908 |
creator | Yuan, Ruihao Xue, Deqing Xu, Yangyang Xue, Dezhen Li, Jinshan |
description | Machine learning based strategies have been increasingly applied in materials science to accelerate the discovery process. Regression algorithm learns the mapping from compositions/features to targeted property and makes prediction for unknown compositions. The quality of features, in some degree, determines the upper limit of the surrogate model performance and the associated search efficiency for desired candidates. We herein propose a data-driven framework combining feature engineering, machine learning, experimental design and synthesis, to optimize the piezoelectric constant of BaTiO3 based ceramics, with the emphasis on feature engineering realized by four strategies. The search for improved piezoelectric constant in the initial data set behaves differently compared to that in the whole unknown space, indicating that the initial data set might be biased to a local scheme. The best composition with a piezoelectric constant of ~ 430 pC/N is synthesized in the second iteration, better than the majority in the initial data set. Insight for the change of piezoelectric constant for the newly synthesized 12 compositions is provided by examining the corresponding evolution of dielectric permittivity within the thermodynamic theory.
•The four different feature engineering methods give rise to similar machine learning model.•The search for improved piezoelectric constant in the initial data set behaves differently to that in the whole unknown space.•The enhanced piezoelectric constants are attributed to the improved dielectric permittivity. |
doi_str_mv | 10.1016/j.jallcom.2022.164468 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667261743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838822008593</els_id><sourcerecordid>2667261743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ca14be042b52b816e33fc929166f29d5c9457074f99c8a571509747f6ed54fa53</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5AscU7x2_EJAeIlgbiUs-U4m9ZRmhQ75fXrcRXunFba_WZWMwidU7KghKrLdtG6rvPDZsEIYwuqhFDlAZrRUvNCKGUO0YwYJouSl-UxOkmpJYRQw-kMfb04vw494A5c7EO_wtmnyosaf4ZxjRtw4y4Chn6VlxD3xDjglGmfr0PEN24ZXjmuXMoaD9Ftgk-TuHNxBXgb4GeADvwYg8_2fRpdP56io8Z1Cc7-5hy93d8tbx-L59eHp9vr58JzrsfCOyoqIIJVklUlVcB54w0zVKmGmVp6I6QmWjTG-NJJTSUxWuhGQS1F4ySfo4vJdxuH9x2k0bbDLvb5pWVKaaaoFjxTcqJ8HFKK0NhtDBsXvy0ldl-ybe1fyXZfsp1KzrqrSQc5wkeAaJMP0HuoQ8yBbT2Efxx-Aej7iQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667261743</pqid></control><display><type>article</type><title>Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yuan, Ruihao ; Xue, Deqing ; Xu, Yangyang ; Xue, Dezhen ; Li, Jinshan</creator><creatorcontrib>Yuan, Ruihao ; Xue, Deqing ; Xu, Yangyang ; Xue, Dezhen ; Li, Jinshan</creatorcontrib><description>Machine learning based strategies have been increasingly applied in materials science to accelerate the discovery process. Regression algorithm learns the mapping from compositions/features to targeted property and makes prediction for unknown compositions. The quality of features, in some degree, determines the upper limit of the surrogate model performance and the associated search efficiency for desired candidates. We herein propose a data-driven framework combining feature engineering, machine learning, experimental design and synthesis, to optimize the piezoelectric constant of BaTiO3 based ceramics, with the emphasis on feature engineering realized by four strategies. The search for improved piezoelectric constant in the initial data set behaves differently compared to that in the whole unknown space, indicating that the initial data set might be biased to a local scheme. The best composition with a piezoelectric constant of ~ 430 pC/N is synthesized in the second iteration, better than the majority in the initial data set. Insight for the change of piezoelectric constant for the newly synthesized 12 compositions is provided by examining the corresponding evolution of dielectric permittivity within the thermodynamic theory.
•The four different feature engineering methods give rise to similar machine learning model.•The search for improved piezoelectric constant in the initial data set behaves differently to that in the whole unknown space.•The enhanced piezoelectric constants are attributed to the improved dielectric permittivity.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.164468</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithms ; Barium titanates ; Ceramics ; Composition ; Datasets ; Design of experiments ; Design optimization ; Experimental design ; Feature engineering ; Iterative methods ; Machine learning ; Materials science ; Piezoelectric constant ; Piezoelectricity ; Searching ; Synthesis</subject><ispartof>Journal of alloys and compounds, 2022-07, Vol.908, p.164468, Article 164468</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ca14be042b52b816e33fc929166f29d5c9457074f99c8a571509747f6ed54fa53</citedby><cites>FETCH-LOGICAL-c337t-ca14be042b52b816e33fc929166f29d5c9457074f99c8a571509747f6ed54fa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2022.164468$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yuan, Ruihao</creatorcontrib><creatorcontrib>Xue, Deqing</creatorcontrib><creatorcontrib>Xu, Yangyang</creatorcontrib><creatorcontrib>Xue, Dezhen</creatorcontrib><creatorcontrib>Li, Jinshan</creatorcontrib><title>Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant</title><title>Journal of alloys and compounds</title><description>Machine learning based strategies have been increasingly applied in materials science to accelerate the discovery process. Regression algorithm learns the mapping from compositions/features to targeted property and makes prediction for unknown compositions. The quality of features, in some degree, determines the upper limit of the surrogate model performance and the associated search efficiency for desired candidates. We herein propose a data-driven framework combining feature engineering, machine learning, experimental design and synthesis, to optimize the piezoelectric constant of BaTiO3 based ceramics, with the emphasis on feature engineering realized by four strategies. The search for improved piezoelectric constant in the initial data set behaves differently compared to that in the whole unknown space, indicating that the initial data set might be biased to a local scheme. The best composition with a piezoelectric constant of ~ 430 pC/N is synthesized in the second iteration, better than the majority in the initial data set. Insight for the change of piezoelectric constant for the newly synthesized 12 compositions is provided by examining the corresponding evolution of dielectric permittivity within the thermodynamic theory.
•The four different feature engineering methods give rise to similar machine learning model.•The search for improved piezoelectric constant in the initial data set behaves differently to that in the whole unknown space.•The enhanced piezoelectric constants are attributed to the improved dielectric permittivity.</description><subject>Algorithms</subject><subject>Barium titanates</subject><subject>Ceramics</subject><subject>Composition</subject><subject>Datasets</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Experimental design</subject><subject>Feature engineering</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Materials science</subject><subject>Piezoelectric constant</subject><subject>Piezoelectricity</subject><subject>Searching</subject><subject>Synthesis</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5AscU7x2_EJAeIlgbiUs-U4m9ZRmhQ75fXrcRXunFba_WZWMwidU7KghKrLdtG6rvPDZsEIYwuqhFDlAZrRUvNCKGUO0YwYJouSl-UxOkmpJYRQw-kMfb04vw494A5c7EO_wtmnyosaf4ZxjRtw4y4Chn6VlxD3xDjglGmfr0PEN24ZXjmuXMoaD9Ftgk-TuHNxBXgb4GeADvwYg8_2fRpdP56io8Z1Cc7-5hy93d8tbx-L59eHp9vr58JzrsfCOyoqIIJVklUlVcB54w0zVKmGmVp6I6QmWjTG-NJJTSUxWuhGQS1F4ySfo4vJdxuH9x2k0bbDLvb5pWVKaaaoFjxTcqJ8HFKK0NhtDBsXvy0ldl-ybe1fyXZfsp1KzrqrSQc5wkeAaJMP0HuoQ8yBbT2Efxx-Aej7iQU</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Yuan, Ruihao</creator><creator>Xue, Deqing</creator><creator>Xu, Yangyang</creator><creator>Xue, Dezhen</creator><creator>Li, Jinshan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220705</creationdate><title>Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant</title><author>Yuan, Ruihao ; Xue, Deqing ; Xu, Yangyang ; Xue, Dezhen ; Li, Jinshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ca14be042b52b816e33fc929166f29d5c9457074f99c8a571509747f6ed54fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Barium titanates</topic><topic>Ceramics</topic><topic>Composition</topic><topic>Datasets</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Experimental design</topic><topic>Feature engineering</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Materials science</topic><topic>Piezoelectric constant</topic><topic>Piezoelectricity</topic><topic>Searching</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Ruihao</creatorcontrib><creatorcontrib>Xue, Deqing</creatorcontrib><creatorcontrib>Xu, Yangyang</creatorcontrib><creatorcontrib>Xue, Dezhen</creatorcontrib><creatorcontrib>Li, Jinshan</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Ruihao</au><au>Xue, Deqing</au><au>Xu, Yangyang</au><au>Xue, Dezhen</au><au>Li, Jinshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>908</volume><spage>164468</spage><pages>164468-</pages><artnum>164468</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Machine learning based strategies have been increasingly applied in materials science to accelerate the discovery process. Regression algorithm learns the mapping from compositions/features to targeted property and makes prediction for unknown compositions. The quality of features, in some degree, determines the upper limit of the surrogate model performance and the associated search efficiency for desired candidates. We herein propose a data-driven framework combining feature engineering, machine learning, experimental design and synthesis, to optimize the piezoelectric constant of BaTiO3 based ceramics, with the emphasis on feature engineering realized by four strategies. The search for improved piezoelectric constant in the initial data set behaves differently compared to that in the whole unknown space, indicating that the initial data set might be biased to a local scheme. The best composition with a piezoelectric constant of ~ 430 pC/N is synthesized in the second iteration, better than the majority in the initial data set. Insight for the change of piezoelectric constant for the newly synthesized 12 compositions is provided by examining the corresponding evolution of dielectric permittivity within the thermodynamic theory.
•The four different feature engineering methods give rise to similar machine learning model.•The search for improved piezoelectric constant in the initial data set behaves differently to that in the whole unknown space.•The enhanced piezoelectric constants are attributed to the improved dielectric permittivity.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2022.164468</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2022-07, Vol.908, p.164468, Article 164468 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2667261743 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Barium titanates Ceramics Composition Datasets Design of experiments Design optimization Experimental design Feature engineering Iterative methods Machine learning Materials science Piezoelectric constant Piezoelectricity Searching Synthesis |
title | Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20combined%20with%20feature%20engineering%20to%20search%20for%20BaTiO3%20based%20ceramics%20with%20large%20piezoelectric%20constant&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Yuan,%20Ruihao&rft.date=2022-07-05&rft.volume=908&rft.spage=164468&rft.pages=164468-&rft.artnum=164468&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.164468&rft_dat=%3Cproquest_cross%3E2667261743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667261743&rft_id=info:pmid/&rft_els_id=S0925838822008593&rfr_iscdi=true |