Distributed Estimation of Algebraic Connectivity
The measurement algebraic connectivity plays an important role in many graph theory-based investigations, such as cooperative control of multiagent systems. In general, the measurement is considered to be centralized. In this article, a distributed model is proposed to estimate the algebraic connect...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2022-05, Vol.52 (5), p.3047-3056 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3056 |
---|---|
container_issue | 5 |
container_start_page | 3047 |
container_title | IEEE transactions on cybernetics |
container_volume | 52 |
creator | Zhang, Yinyan Li, Shuai Weng, Jian |
description | The measurement algebraic connectivity plays an important role in many graph theory-based investigations, such as cooperative control of multiagent systems. In general, the measurement is considered to be centralized. In this article, a distributed model is proposed to estimate the algebraic connectivity (i.e., the second smallest eigenvalue of the corresponding Laplacian matrix) by the approach of distributed estimation via high-pass consensus filters. The global asymptotic convergence of the proposed model is theoretically guaranteed. Numerical examples are shown to verify the theoretical results and the superiority of the proposed distributed model. |
doi_str_mv | 10.1109/TCYB.2020.3022653 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2667016686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9216535</ieee_id><sourcerecordid>2449247697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-2ee3ddde5255f38ed85e26e63e05e229a57056c026839764e669747ab4636ead3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMottT-ABFkwYuXrdlkM9kc61o_oOClHjyF_ZiVlO1uTbJC_70prT2YS4bM8w6Zh5DrhM6ShKqHVf75OGOU0RmnjIHgZ2TMEshixqQ4P9UgR2Tq3JqGk4UnlV2SEQ8RSRkfE_pknLemHDzW0cJ5sym86buob6J5-4WlLUwV5X3XYeXNj_G7K3LRFK3D6fGekI_nxSp_jZfvL2_5fBlXPFU-Zoi8rmsUTIiGZ1hnAhkgcKShYKoQkgqoKIOMKwkpAiiZyqJMgQMWNZ-Q-8Pcre2_B3Reb4yrsG2LDvvBaZamiqUypAJ69w9d94Ptwu80A5A0AcggUMmBqmzvnMVGb23Y1u50QvXeqN4b1Xuj-mg0ZG6Pk4dyg_Up8ecvADcHwCDiqa2Ce8EF_wX0jHc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667016686</pqid></control><display><type>article</type><title>Distributed Estimation of Algebraic Connectivity</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yinyan ; Li, Shuai ; Weng, Jian</creator><creatorcontrib>Zhang, Yinyan ; Li, Shuai ; Weng, Jian</creatorcontrib><description>The measurement algebraic connectivity plays an important role in many graph theory-based investigations, such as cooperative control of multiagent systems. In general, the measurement is considered to be centralized. In this article, a distributed model is proposed to estimate the algebraic connectivity (i.e., the second smallest eigenvalue of the corresponding Laplacian matrix) by the approach of distributed estimation via high-pass consensus filters. The global asymptotic convergence of the proposed model is theoretically guaranteed. Numerical examples are shown to verify the theoretical results and the superiority of the proposed distributed model.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2020.3022653</identifier><identifier>PMID: 33027023</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algebra ; Algebraic connectivity ; Connectivity ; connectivity maintenance ; Convergence ; Cooperative control ; distributed estimation ; Eigenvalues ; Eigenvalues and eigenfunctions ; Estimation ; Graph theory ; Heuristic algorithms ; Laplace equations ; Laplacian matrix ; Multi-agent systems ; Multiagent systems ; Task analysis</subject><ispartof>IEEE transactions on cybernetics, 2022-05, Vol.52 (5), p.3047-3056</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-2ee3ddde5255f38ed85e26e63e05e229a57056c026839764e669747ab4636ead3</citedby><cites>FETCH-LOGICAL-c349t-2ee3ddde5255f38ed85e26e63e05e229a57056c026839764e669747ab4636ead3</cites><orcidid>0000-0001-8316-5289 ; 0000-0003-4067-8230 ; 0000-0002-0463-0291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9216535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9216535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33027023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yinyan</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><title>Distributed Estimation of Algebraic Connectivity</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>The measurement algebraic connectivity plays an important role in many graph theory-based investigations, such as cooperative control of multiagent systems. In general, the measurement is considered to be centralized. In this article, a distributed model is proposed to estimate the algebraic connectivity (i.e., the second smallest eigenvalue of the corresponding Laplacian matrix) by the approach of distributed estimation via high-pass consensus filters. The global asymptotic convergence of the proposed model is theoretically guaranteed. Numerical examples are shown to verify the theoretical results and the superiority of the proposed distributed model.</description><subject>Algebra</subject><subject>Algebraic connectivity</subject><subject>Connectivity</subject><subject>connectivity maintenance</subject><subject>Convergence</subject><subject>Cooperative control</subject><subject>distributed estimation</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimation</subject><subject>Graph theory</subject><subject>Heuristic algorithms</subject><subject>Laplace equations</subject><subject>Laplacian matrix</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Task analysis</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMottT-ABFkwYuXrdlkM9kc61o_oOClHjyF_ZiVlO1uTbJC_70prT2YS4bM8w6Zh5DrhM6ShKqHVf75OGOU0RmnjIHgZ2TMEshixqQ4P9UgR2Tq3JqGk4UnlV2SEQ8RSRkfE_pknLemHDzW0cJ5sym86buob6J5-4WlLUwV5X3XYeXNj_G7K3LRFK3D6fGekI_nxSp_jZfvL2_5fBlXPFU-Zoi8rmsUTIiGZ1hnAhkgcKShYKoQkgqoKIOMKwkpAiiZyqJMgQMWNZ-Q-8Pcre2_B3Reb4yrsG2LDvvBaZamiqUypAJ69w9d94Ptwu80A5A0AcggUMmBqmzvnMVGb23Y1u50QvXeqN4b1Xuj-mg0ZG6Pk4dyg_Up8ecvADcHwCDiqa2Ce8EF_wX0jHc4</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zhang, Yinyan</creator><creator>Li, Shuai</creator><creator>Weng, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8316-5289</orcidid><orcidid>https://orcid.org/0000-0003-4067-8230</orcidid><orcidid>https://orcid.org/0000-0002-0463-0291</orcidid></search><sort><creationdate>20220501</creationdate><title>Distributed Estimation of Algebraic Connectivity</title><author>Zhang, Yinyan ; Li, Shuai ; Weng, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-2ee3ddde5255f38ed85e26e63e05e229a57056c026839764e669747ab4636ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algebraic connectivity</topic><topic>Connectivity</topic><topic>connectivity maintenance</topic><topic>Convergence</topic><topic>Cooperative control</topic><topic>distributed estimation</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimation</topic><topic>Graph theory</topic><topic>Heuristic algorithms</topic><topic>Laplace equations</topic><topic>Laplacian matrix</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yinyan</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yinyan</au><au>Li, Shuai</au><au>Weng, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Estimation of Algebraic Connectivity</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>52</volume><issue>5</issue><spage>3047</spage><epage>3056</epage><pages>3047-3056</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>The measurement algebraic connectivity plays an important role in many graph theory-based investigations, such as cooperative control of multiagent systems. In general, the measurement is considered to be centralized. In this article, a distributed model is proposed to estimate the algebraic connectivity (i.e., the second smallest eigenvalue of the corresponding Laplacian matrix) by the approach of distributed estimation via high-pass consensus filters. The global asymptotic convergence of the proposed model is theoretically guaranteed. Numerical examples are shown to verify the theoretical results and the superiority of the proposed distributed model.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33027023</pmid><doi>10.1109/TCYB.2020.3022653</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8316-5289</orcidid><orcidid>https://orcid.org/0000-0003-4067-8230</orcidid><orcidid>https://orcid.org/0000-0002-0463-0291</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2022-05, Vol.52 (5), p.3047-3056 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_proquest_journals_2667016686 |
source | IEEE Electronic Library (IEL) |
subjects | Algebra Algebraic connectivity Connectivity connectivity maintenance Convergence Cooperative control distributed estimation Eigenvalues Eigenvalues and eigenfunctions Estimation Graph theory Heuristic algorithms Laplace equations Laplacian matrix Multi-agent systems Multiagent systems Task analysis |
title | Distributed Estimation of Algebraic Connectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Estimation%20of%20Algebraic%20Connectivity&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zhang,%20Yinyan&rft.date=2022-05-01&rft.volume=52&rft.issue=5&rft.spage=3047&rft.epage=3056&rft.pages=3047-3056&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2020.3022653&rft_dat=%3Cproquest_RIE%3E2449247697%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667016686&rft_id=info:pmid/33027023&rft_ieee_id=9216535&rfr_iscdi=true |