Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning

Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks’ rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent systems 2022-03, Vol.37 (2), p.27-34
Hauptverfasser: Ji, Shaoxiong, Jiang, Wenqi, Walid, Anwar, Li, Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 2
container_start_page 27
container_title IEEE intelligent systems
container_volume 37
creator Ji, Shaoxiong
Jiang, Wenqi
Walid, Anwar
Li, Xue
description Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks’ rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning under the federated setting. However, the tremendous amount of model parameters burdens the communication network with a high load of transportation. This article introduces two approaches for improving communication efficiency by dynamic sampling and top-kk selective masking. The former controls the fraction of selected client models dynamically, while the latter selects parameters with top-kk largest values of difference for federated updating. Experiments on convolutional image classification and recurrent language modeling are conducted on three public datasets to show our proposed methods’ effectiveness.
doi_str_mv 10.1109/MIS.2021.3114610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667011385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9546691</ieee_id><sourcerecordid>2667011385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-b4724ceb38e40ebbcfb38d29fe2194317a6d5d3662b3c417cd4183ddb86fa9a93</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvBc2dekqbNUeamwoaHuXNIk1fJXNOZdsL-ezM2PL0vj8_7wYeQe6ATAKqelu-rCaMMJhxASKAXZARKQA5MicuUi2OWJbsmN32_oZRxCtWIrF8OwbTeZivT7rY-fGUmuGyFW7SD_8VsafrvY7fpYjbt2nYfvDWD70I-axpvPYYhm6PDaAZ02QJNDAm_JVeN2fZ4d65jsp7PPqdv-eLj9X36vMgtV2rIa1EyYbHmFQqKdW2bFB1TDbL0O4fSSFc4LiWruRVQWieg4s7VlWyMMoqPyeNp7y52P3vsB73p9jGkk5pJWVIAXhWJoifKxq7vIzZ6F31r4kED1Ud5OsnTR3n6LC-NPJxGPCL-46oQUirgf-80ayE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667011385</pqid></control><display><type>article</type><title>Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Ji, Shaoxiong ; Jiang, Wenqi ; Walid, Anwar ; Li, Xue</creator><creatorcontrib>Ji, Shaoxiong ; Jiang, Wenqi ; Walid, Anwar ; Li, Xue</creatorcontrib><description>Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks’ rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning under the federated setting. However, the tremendous amount of model parameters burdens the communication network with a high load of transportation. This article introduces two approaches for improving communication efficiency by dynamic sampling and top-kk selective masking. The former controls the fraction of selected client models dynamically, while the latter selects parameters with top-kk largest values of difference for federated updating. Experiments on convolutional image classification and recurrent language modeling are conducted on three public datasets to show our proposed methods’ effectiveness.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2021.3114610</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Artificial neural networks ; Collaborative work ; Communication ; Computational modeling ; Costs ; Deep learning ; Energy efficiency ; Federated learning ; Heuristic algorithms ; Image classification ; Machine learning ; Masking ; Mathematical models ; Modelling ; Optimization ; Parameters ; Sampling ; Servers ; Training data ; Transportation</subject><ispartof>IEEE intelligent systems, 2022-03, Vol.37 (2), p.27-34</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-b4724ceb38e40ebbcfb38d29fe2194317a6d5d3662b3c417cd4183ddb86fa9a93</citedby><cites>FETCH-LOGICAL-c399t-b4724ceb38e40ebbcfb38d29fe2194317a6d5d3662b3c417cd4183ddb86fa9a93</cites><orcidid>0000-0003-3281-8002 ; 0000-0002-4515-6792 ; 0000-0003-1992-6068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9546691$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids></links><search><creatorcontrib>Ji, Shaoxiong</creatorcontrib><creatorcontrib>Jiang, Wenqi</creatorcontrib><creatorcontrib>Walid, Anwar</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><title>Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks’ rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning under the federated setting. However, the tremendous amount of model parameters burdens the communication network with a high load of transportation. This article introduces two approaches for improving communication efficiency by dynamic sampling and top-kk selective masking. The former controls the fraction of selected client models dynamically, while the latter selects parameters with top-kk largest values of difference for federated updating. Experiments on convolutional image classification and recurrent language modeling are conducted on three public datasets to show our proposed methods’ effectiveness.</description><subject>Artificial neural networks</subject><subject>Collaborative work</subject><subject>Communication</subject><subject>Computational modeling</subject><subject>Costs</subject><subject>Deep learning</subject><subject>Energy efficiency</subject><subject>Federated learning</subject><subject>Heuristic algorithms</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Masking</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Sampling</subject><subject>Servers</subject><subject>Training data</subject><subject>Transportation</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOKd3wUvBc2dekqbNUeamwoaHuXNIk1fJXNOZdsL-ezM2PL0vj8_7wYeQe6ATAKqelu-rCaMMJhxASKAXZARKQA5MicuUi2OWJbsmN32_oZRxCtWIrF8OwbTeZivT7rY-fGUmuGyFW7SD_8VsafrvY7fpYjbt2nYfvDWD70I-axpvPYYhm6PDaAZ02QJNDAm_JVeN2fZ4d65jsp7PPqdv-eLj9X36vMgtV2rIa1EyYbHmFQqKdW2bFB1TDbL0O4fSSFc4LiWruRVQWieg4s7VlWyMMoqPyeNp7y52P3vsB73p9jGkk5pJWVIAXhWJoifKxq7vIzZ6F31r4kED1Ud5OsnTR3n6LC-NPJxGPCL-46oQUirgf-80ayE</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ji, Shaoxiong</creator><creator>Jiang, Wenqi</creator><creator>Walid, Anwar</creator><creator>Li, Xue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3281-8002</orcidid><orcidid>https://orcid.org/0000-0002-4515-6792</orcidid><orcidid>https://orcid.org/0000-0003-1992-6068</orcidid></search><sort><creationdate>20220301</creationdate><title>Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning</title><author>Ji, Shaoxiong ; Jiang, Wenqi ; Walid, Anwar ; Li, Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-b4724ceb38e40ebbcfb38d29fe2194317a6d5d3662b3c417cd4183ddb86fa9a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Collaborative work</topic><topic>Communication</topic><topic>Computational modeling</topic><topic>Costs</topic><topic>Deep learning</topic><topic>Energy efficiency</topic><topic>Federated learning</topic><topic>Heuristic algorithms</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Masking</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Sampling</topic><topic>Servers</topic><topic>Training data</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Shaoxiong</creatorcontrib><creatorcontrib>Jiang, Wenqi</creatorcontrib><creatorcontrib>Walid, Anwar</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Shaoxiong</au><au>Jiang, Wenqi</au><au>Walid, Anwar</au><au>Li, Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>37</volume><issue>2</issue><spage>27</spage><epage>34</epage><pages>27-34</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks’ rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning under the federated setting. However, the tremendous amount of model parameters burdens the communication network with a high load of transportation. This article introduces two approaches for improving communication efficiency by dynamic sampling and top-kk selective masking. The former controls the fraction of selected client models dynamically, while the latter selects parameters with top-kk largest values of difference for federated updating. Experiments on convolutional image classification and recurrent language modeling are conducted on three public datasets to show our proposed methods’ effectiveness.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MIS.2021.3114610</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3281-8002</orcidid><orcidid>https://orcid.org/0000-0002-4515-6792</orcidid><orcidid>https://orcid.org/0000-0003-1992-6068</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1541-1672
ispartof IEEE intelligent systems, 2022-03, Vol.37 (2), p.27-34
issn 1541-1672
1941-1294
language eng
recordid cdi_proquest_journals_2667011385
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Collaborative work
Communication
Computational modeling
Costs
Deep learning
Energy efficiency
Federated learning
Heuristic algorithms
Image classification
Machine learning
Masking
Mathematical models
Modelling
Optimization
Parameters
Sampling
Servers
Training data
Transportation
title Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Sampling%20and%20Selective%20Masking%20for%20Communication-Efficient%20Federated%20Learning&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Ji,%20Shaoxiong&rft.date=2022-03-01&rft.volume=37&rft.issue=2&rft.spage=27&rft.epage=34&rft.pages=27-34&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2021.3114610&rft_dat=%3Cproquest_cross%3E2667011385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667011385&rft_id=info:pmid/&rft_ieee_id=9546691&rfr_iscdi=true