Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning
Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks’ rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning un...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2022-03, Vol.37 (2), p.27-34 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 2 |
container_start_page | 27 |
container_title | IEEE intelligent systems |
container_volume | 37 |
creator | Ji, Shaoxiong Jiang, Wenqi Walid, Anwar Li, Xue |
description | Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks’ rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning under the federated setting. However, the tremendous amount of model parameters burdens the communication network with a high load of transportation. This article introduces two approaches for improving communication efficiency by dynamic sampling and top-kk selective masking. The former controls the fraction of selected client models dynamically, while the latter selects parameters with top-kk largest values of difference for federated updating. Experiments on convolutional image classification and recurrent language modeling are conducted on three public datasets to show our proposed methods’ effectiveness. |
doi_str_mv | 10.1109/MIS.2021.3114610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2667011385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9546691</ieee_id><sourcerecordid>2667011385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-b4724ceb38e40ebbcfb38d29fe2194317a6d5d3662b3c417cd4183ddb86fa9a93</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvBc2dekqbNUeamwoaHuXNIk1fJXNOZdsL-ezM2PL0vj8_7wYeQe6ATAKqelu-rCaMMJhxASKAXZARKQA5MicuUi2OWJbsmN32_oZRxCtWIrF8OwbTeZivT7rY-fGUmuGyFW7SD_8VsafrvY7fpYjbt2nYfvDWD70I-axpvPYYhm6PDaAZ02QJNDAm_JVeN2fZ4d65jsp7PPqdv-eLj9X36vMgtV2rIa1EyYbHmFQqKdW2bFB1TDbL0O4fSSFc4LiWruRVQWieg4s7VlWyMMoqPyeNp7y52P3vsB73p9jGkk5pJWVIAXhWJoifKxq7vIzZ6F31r4kED1Ud5OsnTR3n6LC-NPJxGPCL-46oQUirgf-80ayE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667011385</pqid></control><display><type>article</type><title>Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Ji, Shaoxiong ; Jiang, Wenqi ; Walid, Anwar ; Li, Xue</creator><creatorcontrib>Ji, Shaoxiong ; Jiang, Wenqi ; Walid, Anwar ; Li, Xue</creatorcontrib><description>Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks’ rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning under the federated setting. However, the tremendous amount of model parameters burdens the communication network with a high load of transportation. This article introduces two approaches for improving communication efficiency by dynamic sampling and top-kk selective masking. The former controls the fraction of selected client models dynamically, while the latter selects parameters with top-kk largest values of difference for federated updating. Experiments on convolutional image classification and recurrent language modeling are conducted on three public datasets to show our proposed methods’ effectiveness.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2021.3114610</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Artificial neural networks ; Collaborative work ; Communication ; Computational modeling ; Costs ; Deep learning ; Energy efficiency ; Federated learning ; Heuristic algorithms ; Image classification ; Machine learning ; Masking ; Mathematical models ; Modelling ; Optimization ; Parameters ; Sampling ; Servers ; Training data ; Transportation</subject><ispartof>IEEE intelligent systems, 2022-03, Vol.37 (2), p.27-34</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-b4724ceb38e40ebbcfb38d29fe2194317a6d5d3662b3c417cd4183ddb86fa9a93</citedby><cites>FETCH-LOGICAL-c399t-b4724ceb38e40ebbcfb38d29fe2194317a6d5d3662b3c417cd4183ddb86fa9a93</cites><orcidid>0000-0003-3281-8002 ; 0000-0002-4515-6792 ; 0000-0003-1992-6068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9546691$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids></links><search><creatorcontrib>Ji, Shaoxiong</creatorcontrib><creatorcontrib>Jiang, Wenqi</creatorcontrib><creatorcontrib>Walid, Anwar</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><title>Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks’ rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning under the federated setting. However, the tremendous amount of model parameters burdens the communication network with a high load of transportation. This article introduces two approaches for improving communication efficiency by dynamic sampling and top-kk selective masking. The former controls the fraction of selected client models dynamically, while the latter selects parameters with top-kk largest values of difference for federated updating. Experiments on convolutional image classification and recurrent language modeling are conducted on three public datasets to show our proposed methods’ effectiveness.</description><subject>Artificial neural networks</subject><subject>Collaborative work</subject><subject>Communication</subject><subject>Computational modeling</subject><subject>Costs</subject><subject>Deep learning</subject><subject>Energy efficiency</subject><subject>Federated learning</subject><subject>Heuristic algorithms</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Masking</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Sampling</subject><subject>Servers</subject><subject>Training data</subject><subject>Transportation</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOKd3wUvBc2dekqbNUeamwoaHuXNIk1fJXNOZdsL-ezM2PL0vj8_7wYeQe6ATAKqelu-rCaMMJhxASKAXZARKQA5MicuUi2OWJbsmN32_oZRxCtWIrF8OwbTeZivT7rY-fGUmuGyFW7SD_8VsafrvY7fpYjbt2nYfvDWD70I-axpvPYYhm6PDaAZ02QJNDAm_JVeN2fZ4d65jsp7PPqdv-eLj9X36vMgtV2rIa1EyYbHmFQqKdW2bFB1TDbL0O4fSSFc4LiWruRVQWieg4s7VlWyMMoqPyeNp7y52P3vsB73p9jGkk5pJWVIAXhWJoifKxq7vIzZ6F31r4kED1Ud5OsnTR3n6LC-NPJxGPCL-46oQUirgf-80ayE</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ji, Shaoxiong</creator><creator>Jiang, Wenqi</creator><creator>Walid, Anwar</creator><creator>Li, Xue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3281-8002</orcidid><orcidid>https://orcid.org/0000-0002-4515-6792</orcidid><orcidid>https://orcid.org/0000-0003-1992-6068</orcidid></search><sort><creationdate>20220301</creationdate><title>Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning</title><author>Ji, Shaoxiong ; Jiang, Wenqi ; Walid, Anwar ; Li, Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-b4724ceb38e40ebbcfb38d29fe2194317a6d5d3662b3c417cd4183ddb86fa9a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Collaborative work</topic><topic>Communication</topic><topic>Computational modeling</topic><topic>Costs</topic><topic>Deep learning</topic><topic>Energy efficiency</topic><topic>Federated learning</topic><topic>Heuristic algorithms</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Masking</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Sampling</topic><topic>Servers</topic><topic>Training data</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Shaoxiong</creatorcontrib><creatorcontrib>Jiang, Wenqi</creatorcontrib><creatorcontrib>Walid, Anwar</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Shaoxiong</au><au>Jiang, Wenqi</au><au>Walid, Anwar</au><au>Li, Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>37</volume><issue>2</issue><spage>27</spage><epage>34</epage><pages>27-34</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks’ rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning under the federated setting. However, the tremendous amount of model parameters burdens the communication network with a high load of transportation. This article introduces two approaches for improving communication efficiency by dynamic sampling and top-kk selective masking. The former controls the fraction of selected client models dynamically, while the latter selects parameters with top-kk largest values of difference for federated updating. Experiments on convolutional image classification and recurrent language modeling are conducted on three public datasets to show our proposed methods’ effectiveness.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MIS.2021.3114610</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3281-8002</orcidid><orcidid>https://orcid.org/0000-0002-4515-6792</orcidid><orcidid>https://orcid.org/0000-0003-1992-6068</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1541-1672 |
ispartof | IEEE intelligent systems, 2022-03, Vol.37 (2), p.27-34 |
issn | 1541-1672 1941-1294 |
language | eng |
recordid | cdi_proquest_journals_2667011385 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Collaborative work Communication Computational modeling Costs Deep learning Energy efficiency Federated learning Heuristic algorithms Image classification Machine learning Masking Mathematical models Modelling Optimization Parameters Sampling Servers Training data Transportation |
title | Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Sampling%20and%20Selective%20Masking%20for%20Communication-Efficient%20Federated%20Learning&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Ji,%20Shaoxiong&rft.date=2022-03-01&rft.volume=37&rft.issue=2&rft.spage=27&rft.epage=34&rft.pages=27-34&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2021.3114610&rft_dat=%3Cproquest_cross%3E2667011385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667011385&rft_id=info:pmid/&rft_ieee_id=9546691&rfr_iscdi=true |