Inflated Eccentric Migration of Evolving Gas Giants II – Numerical Methodology and Basic Concepts

Hot and warm Jupiters (HJs&WJs) are gas-giant planets orbiting their host stars at short orbital periods, posing a challenge to their efficient in situ formation. Therefore, most HJs&WJs are thought to have migrated from an initially farther-out birth location. Current migration models, i.e....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-05, Vol.931 (1), p.11
Hauptverfasser: Glanz, Hila, Rozner, Mor, Perets, Hagai B., Grishin, Evgeni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 11
container_title The Astrophysical journal
container_volume 931
creator Glanz, Hila
Rozner, Mor
Perets, Hagai B.
Grishin, Evgeni
description Hot and warm Jupiters (HJs&WJs) are gas-giant planets orbiting their host stars at short orbital periods, posing a challenge to their efficient in situ formation. Therefore, most HJs&WJs are thought to have migrated from an initially farther-out birth location. Current migration models, i.e., disk migration (gas-dissipation driven) and eccentric migration (tidal evolution driven), fail to produce the occurrence rate and orbital properties of HJs&WJs. Here we study the role of thermal evolution and its coupling to tidal evolution. We use AMUSE , a numerical environment, and MESA , planetary evolution modeling, to model in detail the coupled internal and orbital evolution of gas giants during their eccentric migration. In a companion paper, we use a simple semianalytic model, validated by our numerical model, and run a population-synthesis study. We consider the initially inflated radii of gas giants (expected following their formation), as well study the effects of the potentially slowed contraction and even reinflation of gas giants (due to tidal and radiative heating) on the eccentric migration. Tidal forces that drive eccentric migration are highly sensitive to the planetary structure and radius. Consequently, we find that this form of inflated eccentric migration operates on significantly (up to an order of magnitude) shorter timescales than previously studied eccentric-migration models. Therefore, inflated eccentric migration gives rise to the more rapid formation of HJs&WJs, higher occurrence rates of WJs, and higher rates of tidal disruptions, compared with previous eccentric-migration models that consider constant ∼Jupiter radii for HJ and WJ progenitors. Coupled thermal–dynamical evolution of eccentric gas giants can therefore play a key role in their evolution.
doi_str_mv 10.3847/1538-4357/ac6807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666953261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666953261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ae5b3051c613d2b137cd3011407733abdc73402ffbc6031a6e3dc45081cf06673</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQhxdRsFbvHhf0aOxuJtlNjlpqDbR6UfC2bPZPTUmzMZsWevMdfEOfxISIXpQ5DDN88w38EDqn5BqSiE9oDEkQQcwnUrGE8AM0-lkdohEhJAoY8JdjdOL9uh_DNB0hlVW2lK3ReKaUqdqmUHhZrBrZFq7CzuLZzpW7olrhufR4Xsiq9TjL8Of7B37YbkzHyxIvTfvqtCvdao9lpfGt9J1n6ipl6tafoiMrS2_OvvsYPd_Nnqb3weJxnk1vFoECnraBNHEOJKaKUdBhToErDYTSiHAOIHOtOEQktDZXjACVzIBWUUwSqixhjMMYXQzeunFvW-NbsXbbpupeipAxlsYQduoxIgOlGud9Y6yom2Ijm72gRPRRij430ecmhii7k8vhpHD1r1PWa5ECFV1RUWvbYVd_YP9avwBHkoDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666953261</pqid></control><display><type>article</type><title>Inflated Eccentric Migration of Evolving Gas Giants II – Numerical Methodology and Basic Concepts</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Glanz, Hila ; Rozner, Mor ; Perets, Hagai B. ; Grishin, Evgeni</creator><creatorcontrib>Glanz, Hila ; Rozner, Mor ; Perets, Hagai B. ; Grishin, Evgeni</creatorcontrib><description>Hot and warm Jupiters (HJs&amp;WJs) are gas-giant planets orbiting their host stars at short orbital periods, posing a challenge to their efficient in situ formation. Therefore, most HJs&amp;WJs are thought to have migrated from an initially farther-out birth location. Current migration models, i.e., disk migration (gas-dissipation driven) and eccentric migration (tidal evolution driven), fail to produce the occurrence rate and orbital properties of HJs&amp;WJs. Here we study the role of thermal evolution and its coupling to tidal evolution. We use AMUSE , a numerical environment, and MESA , planetary evolution modeling, to model in detail the coupled internal and orbital evolution of gas giants during their eccentric migration. In a companion paper, we use a simple semianalytic model, validated by our numerical model, and run a population-synthesis study. We consider the initially inflated radii of gas giants (expected following their formation), as well study the effects of the potentially slowed contraction and even reinflation of gas giants (due to tidal and radiative heating) on the eccentric migration. Tidal forces that drive eccentric migration are highly sensitive to the planetary structure and radius. Consequently, we find that this form of inflated eccentric migration operates on significantly (up to an order of magnitude) shorter timescales than previously studied eccentric-migration models. Therefore, inflated eccentric migration gives rise to the more rapid formation of HJs&amp;WJs, higher occurrence rates of WJs, and higher rates of tidal disruptions, compared with previous eccentric-migration models that consider constant ∼Jupiter radii for HJ and WJ progenitors. Coupled thermal–dynamical evolution of eccentric gas giants can therefore play a key role in their evolution.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac6807</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Exoplanet evolution ; Exoplanet formation ; Exoplanet migration ; Extrasolar planets ; Gas giant planets ; Hot Jupiters ; Jupiter ; Mathematical models ; Modelling ; Numerical models ; Orbital mechanics ; Orbits ; Planetary evolution ; Planetary structure ; Radiative heating ; Thermal evolution</subject><ispartof>The Astrophysical journal, 2022-05, Vol.931 (1), p.11</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ae5b3051c613d2b137cd3011407733abdc73402ffbc6031a6e3dc45081cf06673</citedby><cites>FETCH-LOGICAL-c379t-ae5b3051c613d2b137cd3011407733abdc73402ffbc6031a6e3dc45081cf06673</cites><orcidid>0000-0002-2728-0132 ; 0000-0002-5004-199X ; 0000-0002-6012-2136 ; 0000-0001-7113-723X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac6807/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Glanz, Hila</creatorcontrib><creatorcontrib>Rozner, Mor</creatorcontrib><creatorcontrib>Perets, Hagai B.</creatorcontrib><creatorcontrib>Grishin, Evgeni</creatorcontrib><title>Inflated Eccentric Migration of Evolving Gas Giants II – Numerical Methodology and Basic Concepts</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Hot and warm Jupiters (HJs&amp;WJs) are gas-giant planets orbiting their host stars at short orbital periods, posing a challenge to their efficient in situ formation. Therefore, most HJs&amp;WJs are thought to have migrated from an initially farther-out birth location. Current migration models, i.e., disk migration (gas-dissipation driven) and eccentric migration (tidal evolution driven), fail to produce the occurrence rate and orbital properties of HJs&amp;WJs. Here we study the role of thermal evolution and its coupling to tidal evolution. We use AMUSE , a numerical environment, and MESA , planetary evolution modeling, to model in detail the coupled internal and orbital evolution of gas giants during their eccentric migration. In a companion paper, we use a simple semianalytic model, validated by our numerical model, and run a population-synthesis study. We consider the initially inflated radii of gas giants (expected following their formation), as well study the effects of the potentially slowed contraction and even reinflation of gas giants (due to tidal and radiative heating) on the eccentric migration. Tidal forces that drive eccentric migration are highly sensitive to the planetary structure and radius. Consequently, we find that this form of inflated eccentric migration operates on significantly (up to an order of magnitude) shorter timescales than previously studied eccentric-migration models. Therefore, inflated eccentric migration gives rise to the more rapid formation of HJs&amp;WJs, higher occurrence rates of WJs, and higher rates of tidal disruptions, compared with previous eccentric-migration models that consider constant ∼Jupiter radii for HJ and WJ progenitors. Coupled thermal–dynamical evolution of eccentric gas giants can therefore play a key role in their evolution.</description><subject>Astrophysics</subject><subject>Exoplanet evolution</subject><subject>Exoplanet formation</subject><subject>Exoplanet migration</subject><subject>Extrasolar planets</subject><subject>Gas giant planets</subject><subject>Hot Jupiters</subject><subject>Jupiter</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical models</subject><subject>Orbital mechanics</subject><subject>Orbits</subject><subject>Planetary evolution</subject><subject>Planetary structure</subject><subject>Radiative heating</subject><subject>Thermal evolution</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM9Kw0AQhxdRsFbvHhf0aOxuJtlNjlpqDbR6UfC2bPZPTUmzMZsWevMdfEOfxISIXpQ5DDN88w38EDqn5BqSiE9oDEkQQcwnUrGE8AM0-lkdohEhJAoY8JdjdOL9uh_DNB0hlVW2lK3ReKaUqdqmUHhZrBrZFq7CzuLZzpW7olrhufR4Xsiq9TjL8Of7B37YbkzHyxIvTfvqtCvdao9lpfGt9J1n6ipl6tafoiMrS2_OvvsYPd_Nnqb3weJxnk1vFoECnraBNHEOJKaKUdBhToErDYTSiHAOIHOtOEQktDZXjACVzIBWUUwSqixhjMMYXQzeunFvW-NbsXbbpupeipAxlsYQduoxIgOlGud9Y6yom2Ijm72gRPRRij430ecmhii7k8vhpHD1r1PWa5ECFV1RUWvbYVd_YP9avwBHkoDg</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Glanz, Hila</creator><creator>Rozner, Mor</creator><creator>Perets, Hagai B.</creator><creator>Grishin, Evgeni</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2728-0132</orcidid><orcidid>https://orcid.org/0000-0002-5004-199X</orcidid><orcidid>https://orcid.org/0000-0002-6012-2136</orcidid><orcidid>https://orcid.org/0000-0001-7113-723X</orcidid></search><sort><creationdate>20220501</creationdate><title>Inflated Eccentric Migration of Evolving Gas Giants II – Numerical Methodology and Basic Concepts</title><author>Glanz, Hila ; Rozner, Mor ; Perets, Hagai B. ; Grishin, Evgeni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ae5b3051c613d2b137cd3011407733abdc73402ffbc6031a6e3dc45081cf06673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Exoplanet evolution</topic><topic>Exoplanet formation</topic><topic>Exoplanet migration</topic><topic>Extrasolar planets</topic><topic>Gas giant planets</topic><topic>Hot Jupiters</topic><topic>Jupiter</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical models</topic><topic>Orbital mechanics</topic><topic>Orbits</topic><topic>Planetary evolution</topic><topic>Planetary structure</topic><topic>Radiative heating</topic><topic>Thermal evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glanz, Hila</creatorcontrib><creatorcontrib>Rozner, Mor</creatorcontrib><creatorcontrib>Perets, Hagai B.</creatorcontrib><creatorcontrib>Grishin, Evgeni</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glanz, Hila</au><au>Rozner, Mor</au><au>Perets, Hagai B.</au><au>Grishin, Evgeni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflated Eccentric Migration of Evolving Gas Giants II – Numerical Methodology and Basic Concepts</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>931</volume><issue>1</issue><spage>11</spage><pages>11-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Hot and warm Jupiters (HJs&amp;WJs) are gas-giant planets orbiting their host stars at short orbital periods, posing a challenge to their efficient in situ formation. Therefore, most HJs&amp;WJs are thought to have migrated from an initially farther-out birth location. Current migration models, i.e., disk migration (gas-dissipation driven) and eccentric migration (tidal evolution driven), fail to produce the occurrence rate and orbital properties of HJs&amp;WJs. Here we study the role of thermal evolution and its coupling to tidal evolution. We use AMUSE , a numerical environment, and MESA , planetary evolution modeling, to model in detail the coupled internal and orbital evolution of gas giants during their eccentric migration. In a companion paper, we use a simple semianalytic model, validated by our numerical model, and run a population-synthesis study. We consider the initially inflated radii of gas giants (expected following their formation), as well study the effects of the potentially slowed contraction and even reinflation of gas giants (due to tidal and radiative heating) on the eccentric migration. Tidal forces that drive eccentric migration are highly sensitive to the planetary structure and radius. Consequently, we find that this form of inflated eccentric migration operates on significantly (up to an order of magnitude) shorter timescales than previously studied eccentric-migration models. Therefore, inflated eccentric migration gives rise to the more rapid formation of HJs&amp;WJs, higher occurrence rates of WJs, and higher rates of tidal disruptions, compared with previous eccentric-migration models that consider constant ∼Jupiter radii for HJ and WJ progenitors. Coupled thermal–dynamical evolution of eccentric gas giants can therefore play a key role in their evolution.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac6807</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2728-0132</orcidid><orcidid>https://orcid.org/0000-0002-5004-199X</orcidid><orcidid>https://orcid.org/0000-0002-6012-2136</orcidid><orcidid>https://orcid.org/0000-0001-7113-723X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-05, Vol.931 (1), p.11
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2666953261
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Astrophysics
Exoplanet evolution
Exoplanet formation
Exoplanet migration
Extrasolar planets
Gas giant planets
Hot Jupiters
Jupiter
Mathematical models
Modelling
Numerical models
Orbital mechanics
Orbits
Planetary evolution
Planetary structure
Radiative heating
Thermal evolution
title Inflated Eccentric Migration of Evolving Gas Giants II – Numerical Methodology and Basic Concepts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflated%20Eccentric%20Migration%20of%20Evolving%20Gas%20Giants%20II%20%E2%80%93%20Numerical%20Methodology%20and%20Basic%20Concepts&rft.jtitle=The%20Astrophysical%20journal&rft.au=Glanz,%20Hila&rft.date=2022-05-01&rft.volume=931&rft.issue=1&rft.spage=11&rft.pages=11-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac6807&rft_dat=%3Cproquest_cross%3E2666953261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666953261&rft_id=info:pmid/&rfr_iscdi=true