Public Perceptions of Online Learning in Developing Countries: A Study Using The ELK Stack for Sentiment Analysis on Twitter
This study explores public perceptions toward online learning application in Indonesia. Many studies about online learning were done in developed countries and only a few in developing countries. Moreover, these studies used a qualitative approach which limits the results to be applied in different...
Gespeichert in:
Veröffentlicht in: | International journal of emerging technologies in learning 2020-01, Vol.15 (9), p.94 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 94 |
container_title | International journal of emerging technologies in learning |
container_volume | 15 |
creator | Persada, Satria Fadil Oktavianto, Andri Miraja, Bobby Nadlifatin, Reny Belgiawan, Prawira Fajarindra Perwira Redi, A.A.N Perwira |
description | This study explores public perceptions toward online learning application in Indonesia. Many studies about online learning were done in developed countries and only a few in developing countries. Moreover, these studies used a qualitative approach which limits the results to be applied in different settings. While traditional research using a survey to understand people's perception towards an entity requires a lot of time and efforts; we used efficient and effective manners to gather opinions and then analysed its sentiments using the Logstash, Kibana and Python programming language stack (ELK) stack and Naïve Bayes algorithm. We used Naïve Bayes algorithm for sentiment analysis and ELK stack for storing & gathering tweets from Twitter. With ELK stack, we successfully collected 133.477 tweets related to online learning. From this study, we understood what kind of words that are sentimentally positive and negative tweets. We also gained some insights regarding Indonesia’s student online learning application preferences. |
doi_str_mv | 10.3991/ijet.v15i09.11579 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666934050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666934050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-a39c16789491ecfd40dab948154978ab8fc8aa159e82a1cdde21500e12c30b773</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRSMEEqXwAewssU6x4zxsdlV5ikqt1HZtOc4EXFI72E5RJT6ehLJgMzN35upqdKLomuAJ5Zzc6i2EyZ5kGvMJIVnBT6IRYTmNMWX09N98Hl14v8U4p5zyUfS97MpGK7QEp6AN2hqPbI0WptEG0BykM9q8IW3QPeyhse2gZrYzwWnwd2iKVqGrDmjjh8P6HdDD_LXfSfWBauvQCkzQu76gqZHNwes-3qD1lw4B3GV0VsvGw9VfH0ebx4f17DmeL55eZtN5rJKChlhSrkheMJ5yAqquUlzJkqeMZCkvmCxZrZiUJOPAEklUVUFCMoyBJIrisijoOLo55rbOfnbgg9jazvX_eJHkec5pijPcu8jRpZz13kEtWqd30h0EwWKALAbI4ghZ_EKmP8iOcek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666934050</pqid></control><display><type>article</type><title>Public Perceptions of Online Learning in Developing Countries: A Study Using The ELK Stack for Sentiment Analysis on Twitter</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EBSCOhost Education Source</source><creator>Persada, Satria Fadil ; Oktavianto, Andri ; Miraja, Bobby ; Nadlifatin, Reny ; Belgiawan, Prawira Fajarindra ; Perwira Redi, A.A.N Perwira</creator><creatorcontrib>Persada, Satria Fadil ; Oktavianto, Andri ; Miraja, Bobby ; Nadlifatin, Reny ; Belgiawan, Prawira Fajarindra ; Perwira Redi, A.A.N Perwira</creatorcontrib><description>This study explores public perceptions toward online learning application in Indonesia. Many studies about online learning were done in developed countries and only a few in developing countries. Moreover, these studies used a qualitative approach which limits the results to be applied in different settings. While traditional research using a survey to understand people's perception towards an entity requires a lot of time and efforts; we used efficient and effective manners to gather opinions and then analysed its sentiments using the Logstash, Kibana and Python programming language stack (ELK) stack and Naïve Bayes algorithm. We used Naïve Bayes algorithm for sentiment analysis and ELK stack for storing & gathering tweets from Twitter. With ELK stack, we successfully collected 133.477 tweets related to online learning. From this study, we understood what kind of words that are sentimentally positive and negative tweets. We also gained some insights regarding Indonesia’s student online learning application preferences.</description><identifier>ISSN: 1863-0383</identifier><identifier>EISSN: 1863-0383</identifier><identifier>DOI: 10.3991/ijet.v15i09.11579</identifier><language>eng</language><publisher>Vienna: International Association of Online Engineering (IAOE)</publisher><subject>Algorithms ; Developed Nations ; Developing countries ; Distance learning ; Electronic Learning ; LDCs ; Mathematics ; Perceptions ; Programming Languages ; Sentiment analysis</subject><ispartof>International journal of emerging technologies in learning, 2020-01, Vol.15 (9), p.94</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/at/deed.en_GB (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-a39c16789491ecfd40dab948154978ab8fc8aa159e82a1cdde21500e12c30b773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Persada, Satria Fadil</creatorcontrib><creatorcontrib>Oktavianto, Andri</creatorcontrib><creatorcontrib>Miraja, Bobby</creatorcontrib><creatorcontrib>Nadlifatin, Reny</creatorcontrib><creatorcontrib>Belgiawan, Prawira Fajarindra</creatorcontrib><creatorcontrib>Perwira Redi, A.A.N Perwira</creatorcontrib><title>Public Perceptions of Online Learning in Developing Countries: A Study Using The ELK Stack for Sentiment Analysis on Twitter</title><title>International journal of emerging technologies in learning</title><description>This study explores public perceptions toward online learning application in Indonesia. Many studies about online learning were done in developed countries and only a few in developing countries. Moreover, these studies used a qualitative approach which limits the results to be applied in different settings. While traditional research using a survey to understand people's perception towards an entity requires a lot of time and efforts; we used efficient and effective manners to gather opinions and then analysed its sentiments using the Logstash, Kibana and Python programming language stack (ELK) stack and Naïve Bayes algorithm. We used Naïve Bayes algorithm for sentiment analysis and ELK stack for storing & gathering tweets from Twitter. With ELK stack, we successfully collected 133.477 tweets related to online learning. From this study, we understood what kind of words that are sentimentally positive and negative tweets. We also gained some insights regarding Indonesia’s student online learning application preferences.</description><subject>Algorithms</subject><subject>Developed Nations</subject><subject>Developing countries</subject><subject>Distance learning</subject><subject>Electronic Learning</subject><subject>LDCs</subject><subject>Mathematics</subject><subject>Perceptions</subject><subject>Programming Languages</subject><subject>Sentiment analysis</subject><issn>1863-0383</issn><issn>1863-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkMtOwzAQRSMEEqXwAewssU6x4zxsdlV5ikqt1HZtOc4EXFI72E5RJT6ehLJgMzN35upqdKLomuAJ5Zzc6i2EyZ5kGvMJIVnBT6IRYTmNMWX09N98Hl14v8U4p5zyUfS97MpGK7QEp6AN2hqPbI0WptEG0BykM9q8IW3QPeyhse2gZrYzwWnwd2iKVqGrDmjjh8P6HdDD_LXfSfWBauvQCkzQu76gqZHNwes-3qD1lw4B3GV0VsvGw9VfH0ebx4f17DmeL55eZtN5rJKChlhSrkheMJ5yAqquUlzJkqeMZCkvmCxZrZiUJOPAEklUVUFCMoyBJIrisijoOLo55rbOfnbgg9jazvX_eJHkec5pijPcu8jRpZz13kEtWqd30h0EwWKALAbI4ghZ_EKmP8iOcek</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Persada, Satria Fadil</creator><creator>Oktavianto, Andri</creator><creator>Miraja, Bobby</creator><creator>Nadlifatin, Reny</creator><creator>Belgiawan, Prawira Fajarindra</creator><creator>Perwira Redi, A.A.N Perwira</creator><general>International Association of Online Engineering (IAOE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>M0P</scope><scope>PIMPY</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200101</creationdate><title>Public Perceptions of Online Learning in Developing Countries: A Study Using The ELK Stack for Sentiment Analysis on Twitter</title><author>Persada, Satria Fadil ; Oktavianto, Andri ; Miraja, Bobby ; Nadlifatin, Reny ; Belgiawan, Prawira Fajarindra ; Perwira Redi, A.A.N Perwira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-a39c16789491ecfd40dab948154978ab8fc8aa159e82a1cdde21500e12c30b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Developed Nations</topic><topic>Developing countries</topic><topic>Distance learning</topic><topic>Electronic Learning</topic><topic>LDCs</topic><topic>Mathematics</topic><topic>Perceptions</topic><topic>Programming Languages</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Persada, Satria Fadil</creatorcontrib><creatorcontrib>Oktavianto, Andri</creatorcontrib><creatorcontrib>Miraja, Bobby</creatorcontrib><creatorcontrib>Nadlifatin, Reny</creatorcontrib><creatorcontrib>Belgiawan, Prawira Fajarindra</creatorcontrib><creatorcontrib>Perwira Redi, A.A.N Perwira</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Education Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of emerging technologies in learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persada, Satria Fadil</au><au>Oktavianto, Andri</au><au>Miraja, Bobby</au><au>Nadlifatin, Reny</au><au>Belgiawan, Prawira Fajarindra</au><au>Perwira Redi, A.A.N Perwira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Public Perceptions of Online Learning in Developing Countries: A Study Using The ELK Stack for Sentiment Analysis on Twitter</atitle><jtitle>International journal of emerging technologies in learning</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>94</spage><pages>94-</pages><issn>1863-0383</issn><eissn>1863-0383</eissn><abstract>This study explores public perceptions toward online learning application in Indonesia. Many studies about online learning were done in developed countries and only a few in developing countries. Moreover, these studies used a qualitative approach which limits the results to be applied in different settings. While traditional research using a survey to understand people's perception towards an entity requires a lot of time and efforts; we used efficient and effective manners to gather opinions and then analysed its sentiments using the Logstash, Kibana and Python programming language stack (ELK) stack and Naïve Bayes algorithm. We used Naïve Bayes algorithm for sentiment analysis and ELK stack for storing & gathering tweets from Twitter. With ELK stack, we successfully collected 133.477 tweets related to online learning. From this study, we understood what kind of words that are sentimentally positive and negative tweets. We also gained some insights regarding Indonesia’s student online learning application preferences.</abstract><cop>Vienna</cop><pub>International Association of Online Engineering (IAOE)</pub><doi>10.3991/ijet.v15i09.11579</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-0383 |
ispartof | International journal of emerging technologies in learning, 2020-01, Vol.15 (9), p.94 |
issn | 1863-0383 1863-0383 |
language | eng |
recordid | cdi_proquest_journals_2666934050 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EBSCOhost Education Source |
subjects | Algorithms Developed Nations Developing countries Distance learning Electronic Learning LDCs Mathematics Perceptions Programming Languages Sentiment analysis |
title | Public Perceptions of Online Learning in Developing Countries: A Study Using The ELK Stack for Sentiment Analysis on Twitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Public%20Perceptions%20of%20Online%20Learning%20in%20Developing%20Countries:%20A%20Study%20Using%20The%20ELK%20Stack%20for%20Sentiment%20Analysis%20on%20Twitter&rft.jtitle=International%20journal%20of%20emerging%20technologies%20in%20learning&rft.au=Persada,%20Satria%20Fadil&rft.date=2020-01-01&rft.volume=15&rft.issue=9&rft.spage=94&rft.pages=94-&rft.issn=1863-0383&rft.eissn=1863-0383&rft_id=info:doi/10.3991/ijet.v15i09.11579&rft_dat=%3Cproquest_cross%3E2666934050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666934050&rft_id=info:pmid/&rfr_iscdi=true |