Uniform convergence of stochastic semigroups
For stochastic C 0 -semigroups on L 1 -spaces there is a wealth of results that show strong convergence to an equilibrium as t → ∞ , given that the semigroup contains a partial integral operator. This has plenty of applications to transport equations and in mathematical biology. However, up to now p...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2022-04, Vol.247 (1), p.1-19 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Israel journal of mathematics |
container_volume | 247 |
creator | Glück, Jochen Martin, Florian G. |
description | For stochastic
C
0
-semigroups on
L
1
-spaces there is a wealth of results that show strong convergence to an equilibrium as
t → ∞
, given that the semigroup contains a partial integral operator. This has plenty of applications to transport equations and in mathematical biology. However, up to now partial integral operators do not play a prominent role in theorems which yield uniform convergence of the semigroup rather than only strong convergence.
In this article we prove that, for irreducible stochastic semigroups, uniform convergence to an equilibrium is actually equivalent to being partially integral and uniformly mean ergodic. In addition to this Tauberian theorem, we also show that our semigroup is uniformly convergent if and only if it is partially integral and the dual semigroup satisfies a certain irreducibility condition. Our proof is based on a uniform version of a lower bound theorem of Lasota and Yorke, which we combine with various techniques from Banach lattice theory. |
doi_str_mv | 10.1007/s11856-021-2240-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666932926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666932926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-44be995fd7a1bf213c1c55a5a2306dc42457f4d8707fdc2dc6045391f79ca3753</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fr0Yz-WyOsvgFC17cc8imSe1im5q0gvvr7VrBk6c5zPO8w7wIXQK5AULUbQYohcSEAqaUE7w_QgsQUuBSAByjBfnZgKKn6CznHSGCKWALdL3pmhBTW7jYffpU-875IoYiD9G92Tw0rsi-beoUxz6fo5Ng37O_-J1LtHm4f1094fXL4_Pqbo0dAzlgzrdeaxEqZWEbKDAHTggrLGVEVo5TLlTgVamICpWjlZOEC6YhKO0sU4It0dWc26f4Mfo8mF0cUzedNFRKqRnVVE4UzJRLMefkg-lT09r0ZYCYQylmLsVMr5tDKWY_OXR28sR2tU9_yf9L38ANY_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666932926</pqid></control><display><type>article</type><title>Uniform convergence of stochastic semigroups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Glück, Jochen ; Martin, Florian G.</creator><creatorcontrib>Glück, Jochen ; Martin, Florian G.</creatorcontrib><description>For stochastic
C
0
-semigroups on
L
1
-spaces there is a wealth of results that show strong convergence to an equilibrium as
t → ∞
, given that the semigroup contains a partial integral operator. This has plenty of applications to transport equations and in mathematical biology. However, up to now partial integral operators do not play a prominent role in theorems which yield uniform convergence of the semigroup rather than only strong convergence.
In this article we prove that, for irreducible stochastic semigroups, uniform convergence to an equilibrium is actually equivalent to being partially integral and uniformly mean ergodic. In addition to this Tauberian theorem, we also show that our semigroup is uniformly convergent if and only if it is partially integral and the dual semigroup satisfies a certain irreducibility condition. Our proof is based on a uniform version of a lower bound theorem of Lasota and Yorke, which we combine with various techniques from Banach lattice theory.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-021-2240-z</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Convergence ; Group Theory and Generalizations ; Lattice theory ; Lower bounds ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Semigroups ; Theorems ; Theoretical ; Transport equations</subject><ispartof>Israel journal of mathematics, 2022-04, Vol.247 (1), p.1-19</ispartof><rights>The Hebrew University of Jerusalem 2021</rights><rights>The Hebrew University of Jerusalem 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-44be995fd7a1bf213c1c55a5a2306dc42457f4d8707fdc2dc6045391f79ca3753</citedby><cites>FETCH-LOGICAL-c316t-44be995fd7a1bf213c1c55a5a2306dc42457f4d8707fdc2dc6045391f79ca3753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-021-2240-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-021-2240-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Glück, Jochen</creatorcontrib><creatorcontrib>Martin, Florian G.</creatorcontrib><title>Uniform convergence of stochastic semigroups</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>For stochastic
C
0
-semigroups on
L
1
-spaces there is a wealth of results that show strong convergence to an equilibrium as
t → ∞
, given that the semigroup contains a partial integral operator. This has plenty of applications to transport equations and in mathematical biology. However, up to now partial integral operators do not play a prominent role in theorems which yield uniform convergence of the semigroup rather than only strong convergence.
In this article we prove that, for irreducible stochastic semigroups, uniform convergence to an equilibrium is actually equivalent to being partially integral and uniformly mean ergodic. In addition to this Tauberian theorem, we also show that our semigroup is uniformly convergent if and only if it is partially integral and the dual semigroup satisfies a certain irreducibility condition. Our proof is based on a uniform version of a lower bound theorem of Lasota and Yorke, which we combine with various techniques from Banach lattice theory.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Convergence</subject><subject>Group Theory and Generalizations</subject><subject>Lattice theory</subject><subject>Lower bounds</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Semigroups</subject><subject>Theorems</subject><subject>Theoretical</subject><subject>Transport equations</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Fr0Yz-WyOsvgFC17cc8imSe1im5q0gvvr7VrBk6c5zPO8w7wIXQK5AULUbQYohcSEAqaUE7w_QgsQUuBSAByjBfnZgKKn6CznHSGCKWALdL3pmhBTW7jYffpU-875IoYiD9G92Tw0rsi-beoUxz6fo5Ng37O_-J1LtHm4f1094fXL4_Pqbo0dAzlgzrdeaxEqZWEbKDAHTggrLGVEVo5TLlTgVamICpWjlZOEC6YhKO0sU4It0dWc26f4Mfo8mF0cUzedNFRKqRnVVE4UzJRLMefkg-lT09r0ZYCYQylmLsVMr5tDKWY_OXR28sR2tU9_yf9L38ANY_0</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Glück, Jochen</creator><creator>Martin, Florian G.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>Uniform convergence of stochastic semigroups</title><author>Glück, Jochen ; Martin, Florian G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-44be995fd7a1bf213c1c55a5a2306dc42457f4d8707fdc2dc6045391f79ca3753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Convergence</topic><topic>Group Theory and Generalizations</topic><topic>Lattice theory</topic><topic>Lower bounds</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Semigroups</topic><topic>Theorems</topic><topic>Theoretical</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glück, Jochen</creatorcontrib><creatorcontrib>Martin, Florian G.</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glück, Jochen</au><au>Martin, Florian G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform convergence of stochastic semigroups</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>247</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>For stochastic
C
0
-semigroups on
L
1
-spaces there is a wealth of results that show strong convergence to an equilibrium as
t → ∞
, given that the semigroup contains a partial integral operator. This has plenty of applications to transport equations and in mathematical biology. However, up to now partial integral operators do not play a prominent role in theorems which yield uniform convergence of the semigroup rather than only strong convergence.
In this article we prove that, for irreducible stochastic semigroups, uniform convergence to an equilibrium is actually equivalent to being partially integral and uniformly mean ergodic. In addition to this Tauberian theorem, we also show that our semigroup is uniformly convergent if and only if it is partially integral and the dual semigroup satisfies a certain irreducibility condition. Our proof is based on a uniform version of a lower bound theorem of Lasota and Yorke, which we combine with various techniques from Banach lattice theory.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-021-2240-z</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2022-04, Vol.247 (1), p.1-19 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_2666932926 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Applications of Mathematics Convergence Group Theory and Generalizations Lattice theory Lower bounds Mathematical and Computational Physics Mathematics Mathematics and Statistics Operators (mathematics) Semigroups Theorems Theoretical Transport equations |
title | Uniform convergence of stochastic semigroups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20convergence%20of%20stochastic%20semigroups&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Gl%C3%BCck,%20Jochen&rft.date=2022-04-01&rft.volume=247&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-021-2240-z&rft_dat=%3Cproquest_cross%3E2666932926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666932926&rft_id=info:pmid/&rfr_iscdi=true |