Uniform convergence of stochastic semigroups

For stochastic C 0 -semigroups on L 1 -spaces there is a wealth of results that show strong convergence to an equilibrium as t → ∞ , given that the semigroup contains a partial integral operator. This has plenty of applications to transport equations and in mathematical biology. However, up to now p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2022-04, Vol.247 (1), p.1-19
Hauptverfasser: Glück, Jochen, Martin, Florian G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 1
container_title Israel journal of mathematics
container_volume 247
creator Glück, Jochen
Martin, Florian G.
description For stochastic C 0 -semigroups on L 1 -spaces there is a wealth of results that show strong convergence to an equilibrium as t → ∞ , given that the semigroup contains a partial integral operator. This has plenty of applications to transport equations and in mathematical biology. However, up to now partial integral operators do not play a prominent role in theorems which yield uniform convergence of the semigroup rather than only strong convergence. In this article we prove that, for irreducible stochastic semigroups, uniform convergence to an equilibrium is actually equivalent to being partially integral and uniformly mean ergodic. In addition to this Tauberian theorem, we also show that our semigroup is uniformly convergent if and only if it is partially integral and the dual semigroup satisfies a certain irreducibility condition. Our proof is based on a uniform version of a lower bound theorem of Lasota and Yorke, which we combine with various techniques from Banach lattice theory.
doi_str_mv 10.1007/s11856-021-2240-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666932926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666932926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-44be995fd7a1bf213c1c55a5a2306dc42457f4d8707fdc2dc6045391f79ca3753</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fr0Yz-WyOsvgFC17cc8imSe1im5q0gvvr7VrBk6c5zPO8w7wIXQK5AULUbQYohcSEAqaUE7w_QgsQUuBSAByjBfnZgKKn6CznHSGCKWALdL3pmhBTW7jYffpU-875IoYiD9G92Tw0rsi-beoUxz6fo5Ng37O_-J1LtHm4f1094fXL4_Pqbo0dAzlgzrdeaxEqZWEbKDAHTggrLGVEVo5TLlTgVamICpWjlZOEC6YhKO0sU4It0dWc26f4Mfo8mF0cUzedNFRKqRnVVE4UzJRLMefkg-lT09r0ZYCYQylmLsVMr5tDKWY_OXR28sR2tU9_yf9L38ANY_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666932926</pqid></control><display><type>article</type><title>Uniform convergence of stochastic semigroups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Glück, Jochen ; Martin, Florian G.</creator><creatorcontrib>Glück, Jochen ; Martin, Florian G.</creatorcontrib><description>For stochastic C 0 -semigroups on L 1 -spaces there is a wealth of results that show strong convergence to an equilibrium as t → ∞ , given that the semigroup contains a partial integral operator. This has plenty of applications to transport equations and in mathematical biology. However, up to now partial integral operators do not play a prominent role in theorems which yield uniform convergence of the semigroup rather than only strong convergence. In this article we prove that, for irreducible stochastic semigroups, uniform convergence to an equilibrium is actually equivalent to being partially integral and uniformly mean ergodic. In addition to this Tauberian theorem, we also show that our semigroup is uniformly convergent if and only if it is partially integral and the dual semigroup satisfies a certain irreducibility condition. Our proof is based on a uniform version of a lower bound theorem of Lasota and Yorke, which we combine with various techniques from Banach lattice theory.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-021-2240-z</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Convergence ; Group Theory and Generalizations ; Lattice theory ; Lower bounds ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Semigroups ; Theorems ; Theoretical ; Transport equations</subject><ispartof>Israel journal of mathematics, 2022-04, Vol.247 (1), p.1-19</ispartof><rights>The Hebrew University of Jerusalem 2021</rights><rights>The Hebrew University of Jerusalem 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-44be995fd7a1bf213c1c55a5a2306dc42457f4d8707fdc2dc6045391f79ca3753</citedby><cites>FETCH-LOGICAL-c316t-44be995fd7a1bf213c1c55a5a2306dc42457f4d8707fdc2dc6045391f79ca3753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-021-2240-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-021-2240-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Glück, Jochen</creatorcontrib><creatorcontrib>Martin, Florian G.</creatorcontrib><title>Uniform convergence of stochastic semigroups</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>For stochastic C 0 -semigroups on L 1 -spaces there is a wealth of results that show strong convergence to an equilibrium as t → ∞ , given that the semigroup contains a partial integral operator. This has plenty of applications to transport equations and in mathematical biology. However, up to now partial integral operators do not play a prominent role in theorems which yield uniform convergence of the semigroup rather than only strong convergence. In this article we prove that, for irreducible stochastic semigroups, uniform convergence to an equilibrium is actually equivalent to being partially integral and uniformly mean ergodic. In addition to this Tauberian theorem, we also show that our semigroup is uniformly convergent if and only if it is partially integral and the dual semigroup satisfies a certain irreducibility condition. Our proof is based on a uniform version of a lower bound theorem of Lasota and Yorke, which we combine with various techniques from Banach lattice theory.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Convergence</subject><subject>Group Theory and Generalizations</subject><subject>Lattice theory</subject><subject>Lower bounds</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Semigroups</subject><subject>Theorems</subject><subject>Theoretical</subject><subject>Transport equations</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Fr0Yz-WyOsvgFC17cc8imSe1im5q0gvvr7VrBk6c5zPO8w7wIXQK5AULUbQYohcSEAqaUE7w_QgsQUuBSAByjBfnZgKKn6CznHSGCKWALdL3pmhBTW7jYffpU-875IoYiD9G92Tw0rsi-beoUxz6fo5Ng37O_-J1LtHm4f1094fXL4_Pqbo0dAzlgzrdeaxEqZWEbKDAHTggrLGVEVo5TLlTgVamICpWjlZOEC6YhKO0sU4It0dWc26f4Mfo8mF0cUzedNFRKqRnVVE4UzJRLMefkg-lT09r0ZYCYQylmLsVMr5tDKWY_OXR28sR2tU9_yf9L38ANY_0</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Glück, Jochen</creator><creator>Martin, Florian G.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>Uniform convergence of stochastic semigroups</title><author>Glück, Jochen ; Martin, Florian G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-44be995fd7a1bf213c1c55a5a2306dc42457f4d8707fdc2dc6045391f79ca3753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Convergence</topic><topic>Group Theory and Generalizations</topic><topic>Lattice theory</topic><topic>Lower bounds</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Semigroups</topic><topic>Theorems</topic><topic>Theoretical</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glück, Jochen</creatorcontrib><creatorcontrib>Martin, Florian G.</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glück, Jochen</au><au>Martin, Florian G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform convergence of stochastic semigroups</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>247</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>For stochastic C 0 -semigroups on L 1 -spaces there is a wealth of results that show strong convergence to an equilibrium as t → ∞ , given that the semigroup contains a partial integral operator. This has plenty of applications to transport equations and in mathematical biology. However, up to now partial integral operators do not play a prominent role in theorems which yield uniform convergence of the semigroup rather than only strong convergence. In this article we prove that, for irreducible stochastic semigroups, uniform convergence to an equilibrium is actually equivalent to being partially integral and uniformly mean ergodic. In addition to this Tauberian theorem, we also show that our semigroup is uniformly convergent if and only if it is partially integral and the dual semigroup satisfies a certain irreducibility condition. Our proof is based on a uniform version of a lower bound theorem of Lasota and Yorke, which we combine with various techniques from Banach lattice theory.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-021-2240-z</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2022-04, Vol.247 (1), p.1-19
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2666932926
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Convergence
Group Theory and Generalizations
Lattice theory
Lower bounds
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Semigroups
Theorems
Theoretical
Transport equations
title Uniform convergence of stochastic semigroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20convergence%20of%20stochastic%20semigroups&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Gl%C3%BCck,%20Jochen&rft.date=2022-04-01&rft.volume=247&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-021-2240-z&rft_dat=%3Cproquest_cross%3E2666932926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666932926&rft_id=info:pmid/&rfr_iscdi=true