Machine learning based modelling for estimation of the fundamental time period of precast concrete structures using computer programming

This research investigated the capability of machine learning approaches to evaluate the fundamental time period (FTP) of precast concrete structures. Data set consisting of 288 models with shear wall and beam-column frame structures. The 288 models were analysed using Etabs software and Rstudio.  I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stavební obzor 2021-07, Vol.30 (2)
1. Verfasser: DAHIYA, NITIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Stavební obzor
container_volume 30
creator DAHIYA, NITIN
description This research investigated the capability of machine learning approaches to evaluate the fundamental time period (FTP) of precast concrete structures. Data set consisting of 288 models with shear wall and beam-column frame structures. The 288 models were analysed using Etabs software and Rstudio.  Input parameters consisted of the height of the building, number of bays, length and breadth of the building, cracked or uncracked section, number of storeys and frame type on the FTP of precast concrete structures. Out of 288 models, for testing 108 arbitrary selected models were used and the remaining 180 models were used for training. Linear (LRF), polynomial (PLF) and radial basis (RBF) kernel functions were used for machine learning approach i.e support vector machines (SVM) and gaussian process (GPR). Evaluation of results suggests that linear function-based support vector machines performed well as compared to gaussian process regression. The accuracy of the machine learning approaches was verified through comparison with the available equations to evaluate the FTP in literature. 
doi_str_mv 10.14311/CEJ.2021.02.0041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666864546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666864546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c155t-228024d6b81a6b3dc5df29d84c661661068c376812608c420c8925ee174dd9e73</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRSMEEhX0A9hZYt1gO7bjLFFVXipiA2vLtSdtqsQOtrPgD_hsHMoCaaR5Xd3RnKK4IbgkrCLkbr15KSmmpMS0xJiRs2JBJOYrymtx_q--LJYxHjHGpKGYcLEovl-1OXQOUA86uM7t0U5HsGjwFvp-7lsfEMTUDTp13iHfonQA1E7O6gFc0j3KO0AjhM7beT0GMDomZLwzARKgmMJk0hQgoinOlsYP45QgZKnfBz0MeXhdXLS6j7D8y1fFx8Pmff202r49Pq_vtytDOE8rSiWmzIqdJFrsKmu4bWljJTNCkBxYSFPVQhIqsDSMYiMbygFIzaxtoK6uituTb779OeXH1NFPweWTigohpGCciawiJ5UJPsYArRpDJhC-FMHql7nKzNXMXGGqZubVD-ngdik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666864546</pqid></control><display><type>article</type><title>Machine learning based modelling for estimation of the fundamental time period of precast concrete structures using computer programming</title><source>DOAJ Directory of Open Access Journals</source><creator>DAHIYA, NITIN</creator><creatorcontrib>DAHIYA, NITIN</creatorcontrib><description>This research investigated the capability of machine learning approaches to evaluate the fundamental time period (FTP) of precast concrete structures. Data set consisting of 288 models with shear wall and beam-column frame structures. The 288 models were analysed using Etabs software and Rstudio.  Input parameters consisted of the height of the building, number of bays, length and breadth of the building, cracked or uncracked section, number of storeys and frame type on the FTP of precast concrete structures. Out of 288 models, for testing 108 arbitrary selected models were used and the remaining 180 models were used for training. Linear (LRF), polynomial (PLF) and radial basis (RBF) kernel functions were used for machine learning approach i.e support vector machines (SVM) and gaussian process (GPR). Evaluation of results suggests that linear function-based support vector machines performed well as compared to gaussian process regression. The accuracy of the machine learning approaches was verified through comparison with the available equations to evaluate the FTP in literature. </description><identifier>ISSN: 1805-2576</identifier><identifier>EISSN: 1805-2576</identifier><identifier>DOI: 10.14311/CEJ.2021.02.0041</identifier><language>eng</language><publisher>Prague: Czech Technical University in Prague Faculty of Civil Engineering</publisher><subject>Beam-columns ; Computer programming ; Concrete ; Concrete structures ; Frame structures ; Gaussian process ; Kernel functions ; Linear functions ; Machine learning ; Polynomials ; Precast concrete ; Reinforced concrete ; Shear walls ; Support vector machines</subject><ispartof>Stavební obzor, 2021-07, Vol.30 (2)</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>DAHIYA, NITIN</creatorcontrib><title>Machine learning based modelling for estimation of the fundamental time period of precast concrete structures using computer programming</title><title>Stavební obzor</title><description>This research investigated the capability of machine learning approaches to evaluate the fundamental time period (FTP) of precast concrete structures. Data set consisting of 288 models with shear wall and beam-column frame structures. The 288 models were analysed using Etabs software and Rstudio.  Input parameters consisted of the height of the building, number of bays, length and breadth of the building, cracked or uncracked section, number of storeys and frame type on the FTP of precast concrete structures. Out of 288 models, for testing 108 arbitrary selected models were used and the remaining 180 models were used for training. Linear (LRF), polynomial (PLF) and radial basis (RBF) kernel functions were used for machine learning approach i.e support vector machines (SVM) and gaussian process (GPR). Evaluation of results suggests that linear function-based support vector machines performed well as compared to gaussian process regression. The accuracy of the machine learning approaches was verified through comparison with the available equations to evaluate the FTP in literature. </description><subject>Beam-columns</subject><subject>Computer programming</subject><subject>Concrete</subject><subject>Concrete structures</subject><subject>Frame structures</subject><subject>Gaussian process</subject><subject>Kernel functions</subject><subject>Linear functions</subject><subject>Machine learning</subject><subject>Polynomials</subject><subject>Precast concrete</subject><subject>Reinforced concrete</subject><subject>Shear walls</subject><subject>Support vector machines</subject><issn>1805-2576</issn><issn>1805-2576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkMtOwzAQRSMEEhX0A9hZYt1gO7bjLFFVXipiA2vLtSdtqsQOtrPgD_hsHMoCaaR5Xd3RnKK4IbgkrCLkbr15KSmmpMS0xJiRs2JBJOYrymtx_q--LJYxHjHGpKGYcLEovl-1OXQOUA86uM7t0U5HsGjwFvp-7lsfEMTUDTp13iHfonQA1E7O6gFc0j3KO0AjhM7beT0GMDomZLwzARKgmMJk0hQgoinOlsYP45QgZKnfBz0MeXhdXLS6j7D8y1fFx8Pmff202r49Pq_vtytDOE8rSiWmzIqdJFrsKmu4bWljJTNCkBxYSFPVQhIqsDSMYiMbygFIzaxtoK6uituTb779OeXH1NFPweWTigohpGCciawiJ5UJPsYArRpDJhC-FMHql7nKzNXMXGGqZubVD-ngdik</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>DAHIYA, NITIN</creator><general>Czech Technical University in Prague Faculty of Civil Engineering</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210728</creationdate><title>Machine learning based modelling for estimation of the fundamental time period of precast concrete structures using computer programming</title><author>DAHIYA, NITIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c155t-228024d6b81a6b3dc5df29d84c661661068c376812608c420c8925ee174dd9e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Beam-columns</topic><topic>Computer programming</topic><topic>Concrete</topic><topic>Concrete structures</topic><topic>Frame structures</topic><topic>Gaussian process</topic><topic>Kernel functions</topic><topic>Linear functions</topic><topic>Machine learning</topic><topic>Polynomials</topic><topic>Precast concrete</topic><topic>Reinforced concrete</topic><topic>Shear walls</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DAHIYA, NITIN</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Stavební obzor</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DAHIYA, NITIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning based modelling for estimation of the fundamental time period of precast concrete structures using computer programming</atitle><jtitle>Stavební obzor</jtitle><date>2021-07-28</date><risdate>2021</risdate><volume>30</volume><issue>2</issue><issn>1805-2576</issn><eissn>1805-2576</eissn><abstract>This research investigated the capability of machine learning approaches to evaluate the fundamental time period (FTP) of precast concrete structures. Data set consisting of 288 models with shear wall and beam-column frame structures. The 288 models were analysed using Etabs software and Rstudio.  Input parameters consisted of the height of the building, number of bays, length and breadth of the building, cracked or uncracked section, number of storeys and frame type on the FTP of precast concrete structures. Out of 288 models, for testing 108 arbitrary selected models were used and the remaining 180 models were used for training. Linear (LRF), polynomial (PLF) and radial basis (RBF) kernel functions were used for machine learning approach i.e support vector machines (SVM) and gaussian process (GPR). Evaluation of results suggests that linear function-based support vector machines performed well as compared to gaussian process regression. The accuracy of the machine learning approaches was verified through comparison with the available equations to evaluate the FTP in literature. </abstract><cop>Prague</cop><pub>Czech Technical University in Prague Faculty of Civil Engineering</pub><doi>10.14311/CEJ.2021.02.0041</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1805-2576
ispartof Stavební obzor, 2021-07, Vol.30 (2)
issn 1805-2576
1805-2576
language eng
recordid cdi_proquest_journals_2666864546
source DOAJ Directory of Open Access Journals
subjects Beam-columns
Computer programming
Concrete
Concrete structures
Frame structures
Gaussian process
Kernel functions
Linear functions
Machine learning
Polynomials
Precast concrete
Reinforced concrete
Shear walls
Support vector machines
title Machine learning based modelling for estimation of the fundamental time period of precast concrete structures using computer programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20based%20modelling%20for%20estimation%20of%20the%20fundamental%20time%20period%20of%20precast%20concrete%20structures%20using%20computer%20programming&rft.jtitle=Stavebn%C3%AD%20obzor&rft.au=DAHIYA,%20NITIN&rft.date=2021-07-28&rft.volume=30&rft.issue=2&rft.issn=1805-2576&rft.eissn=1805-2576&rft_id=info:doi/10.14311/CEJ.2021.02.0041&rft_dat=%3Cproquest_cross%3E2666864546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666864546&rft_id=info:pmid/&rfr_iscdi=true