Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit
Efficient nanocatalysis requires swift delivery of reactants to catalytic sites, but the presence of diffusion‐dominated, hydrodynamic boundary layers on all heterogeneous catalysts impedes fast chemical transformation. Here, efficient nanocatalysis is achieved by applying a magnetic‐responsive nano...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2022-05, Vol.14 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | ChemCatChem |
container_volume | 14 |
creator | Mohamed‐Ibrahim, Nur Amalina binte Kheng Boong, Siew Zhong Ang, Zhi Shiuan Ng, Li Tan, Jia Ying Charlene Chong, Carice Kwee Lee, Hiang |
description | Efficient nanocatalysis requires swift delivery of reactants to catalytic sites, but the presence of diffusion‐dominated, hydrodynamic boundary layers on all heterogeneous catalysts impedes fast chemical transformation. Here, efficient nanocatalysis is achieved by applying a magnetic‐responsive nanocatalyst‐liquid interface to create a vortex‐like flow that rapidly pulls reactants from bulk solution to the catalyst, beyond the diffusion limit. Consequently, our design attains a >90 % degradation efficiency in 10‐fold and 30‐fold faster than traditional homogenization methods, respectively. This unique molecule delivery design will complement recent advances in active catalytic nanomaterials to realize ideal nanocatalysis in emerging chemical, energy, and environmental applications.
Dynamic manipulation of a spinning nanocatalyst‐liquid interface accelerates reactants delivery to catalytic sites via a vortex‐like, hydrodynamic flow that originates from the nanocatalytic ensemble. This design consequently achieves efficient nanocatalysis by enabling fast and steady chemical transformations, notably overcoming the formidable diffusion barrier that occurs at the solid‐liquid interface of most heterogeneous (nano)catalysts. |
doi_str_mv | 10.1002/cctc.202200036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666852840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666852840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-72b7f15a896901eb2f25ac548034b0a342d94eb268dc5b7edcb38417e9b889b03</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltibnGcxLHHNvxVCiChMluO41SuUju1HVA2VjaekSchUVAZme7Rvd85VzpBcBnCeQghuhbCizmCCEEII3wUTEKC01lEKD0-aAJPgzPnthBiGqXJJPhcNE3dKb0Bj3yjpVfi--PrRbrGaKfeJHji2gjued05319ytW9VCVbaS1txIUFlLFgIP6CPppairXvBtWramntlNPAGLI1xHmRjinJgKTujS3Cjqqp1A5OrnfLnwUnFaycvfuc0eL27XWcPs_z5fpUt8pmIkhTPUlSkVZhwQjGFoSxQhRIukpjAKC4gj2JU0rhfY1KKpEhlKYqIxGEqaUEILWA0Da7G3MaafSudZ1vTWt2_ZAhjTBJE4oGaj5SwxjkrK9ZYteO2YyFkQ91sqJsd6u4NdDS8q1p2_9Asy9bZn_cHheKIXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666852840</pqid></control><display><type>article</type><title>Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mohamed‐Ibrahim, Nur Amalina binte ; Kheng Boong, Siew ; Zhong Ang, Zhi ; Shiuan Ng, Li ; Tan, Jia Ying Charlene ; Chong, Carice ; Kwee Lee, Hiang</creator><creatorcontrib>Mohamed‐Ibrahim, Nur Amalina binte ; Kheng Boong, Siew ; Zhong Ang, Zhi ; Shiuan Ng, Li ; Tan, Jia Ying Charlene ; Chong, Carice ; Kwee Lee, Hiang</creatorcontrib><description>Efficient nanocatalysis requires swift delivery of reactants to catalytic sites, but the presence of diffusion‐dominated, hydrodynamic boundary layers on all heterogeneous catalysts impedes fast chemical transformation. Here, efficient nanocatalysis is achieved by applying a magnetic‐responsive nanocatalyst‐liquid interface to create a vortex‐like flow that rapidly pulls reactants from bulk solution to the catalyst, beyond the diffusion limit. Consequently, our design attains a >90 % degradation efficiency in <5 min with reaction kinetics tunable via the nanocatalyst spin rate. The spinning nanocatalyst notably exhibits reaction kinetics and molecule transfer rates >10‐fold and 30‐fold faster than traditional homogenization methods, respectively. This unique molecule delivery design will complement recent advances in active catalytic nanomaterials to realize ideal nanocatalysis in emerging chemical, energy, and environmental applications.
Dynamic manipulation of a spinning nanocatalyst‐liquid interface accelerates reactants delivery to catalytic sites via a vortex‐like, hydrodynamic flow that originates from the nanocatalytic ensemble. This design consequently achieves efficient nanocatalysis by enabling fast and steady chemical transformations, notably overcoming the formidable diffusion barrier that occurs at the solid‐liquid interface of most heterogeneous (nano)catalysts.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202200036</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boundary layers ; Catalysis ; Catalysts ; Diffusion layers ; diffusion limit ; Diffusion rate ; dynamic interface ; magnetic-responsive ; molecule manipulation ; nanocatayst ; Nanomaterials ; Reaction kinetics</subject><ispartof>ChemCatChem, 2022-05, Vol.14 (10), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-72b7f15a896901eb2f25ac548034b0a342d94eb268dc5b7edcb38417e9b889b03</citedby><cites>FETCH-LOGICAL-c3576-72b7f15a896901eb2f25ac548034b0a342d94eb268dc5b7edcb38417e9b889b03</cites><orcidid>0000-0003-0823-4111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202200036$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202200036$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Mohamed‐Ibrahim, Nur Amalina binte</creatorcontrib><creatorcontrib>Kheng Boong, Siew</creatorcontrib><creatorcontrib>Zhong Ang, Zhi</creatorcontrib><creatorcontrib>Shiuan Ng, Li</creatorcontrib><creatorcontrib>Tan, Jia Ying Charlene</creatorcontrib><creatorcontrib>Chong, Carice</creatorcontrib><creatorcontrib>Kwee Lee, Hiang</creatorcontrib><title>Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit</title><title>ChemCatChem</title><description>Efficient nanocatalysis requires swift delivery of reactants to catalytic sites, but the presence of diffusion‐dominated, hydrodynamic boundary layers on all heterogeneous catalysts impedes fast chemical transformation. Here, efficient nanocatalysis is achieved by applying a magnetic‐responsive nanocatalyst‐liquid interface to create a vortex‐like flow that rapidly pulls reactants from bulk solution to the catalyst, beyond the diffusion limit. Consequently, our design attains a >90 % degradation efficiency in <5 min with reaction kinetics tunable via the nanocatalyst spin rate. The spinning nanocatalyst notably exhibits reaction kinetics and molecule transfer rates >10‐fold and 30‐fold faster than traditional homogenization methods, respectively. This unique molecule delivery design will complement recent advances in active catalytic nanomaterials to realize ideal nanocatalysis in emerging chemical, energy, and environmental applications.
Dynamic manipulation of a spinning nanocatalyst‐liquid interface accelerates reactants delivery to catalytic sites via a vortex‐like, hydrodynamic flow that originates from the nanocatalytic ensemble. This design consequently achieves efficient nanocatalysis by enabling fast and steady chemical transformations, notably overcoming the formidable diffusion barrier that occurs at the solid‐liquid interface of most heterogeneous (nano)catalysts.</description><subject>Boundary layers</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Diffusion layers</subject><subject>diffusion limit</subject><subject>Diffusion rate</subject><subject>dynamic interface</subject><subject>magnetic-responsive</subject><subject>molecule manipulation</subject><subject>nanocatayst</subject><subject>Nanomaterials</subject><subject>Reaction kinetics</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEEqWwMltibnGcxLHHNvxVCiChMluO41SuUju1HVA2VjaekSchUVAZme7Rvd85VzpBcBnCeQghuhbCizmCCEEII3wUTEKC01lEKD0-aAJPgzPnthBiGqXJJPhcNE3dKb0Bj3yjpVfi--PrRbrGaKfeJHji2gjued05319ytW9VCVbaS1txIUFlLFgIP6CPppairXvBtWramntlNPAGLI1xHmRjinJgKTujS3Cjqqp1A5OrnfLnwUnFaycvfuc0eL27XWcPs_z5fpUt8pmIkhTPUlSkVZhwQjGFoSxQhRIukpjAKC4gj2JU0rhfY1KKpEhlKYqIxGEqaUEILWA0Da7G3MaafSudZ1vTWt2_ZAhjTBJE4oGaj5SwxjkrK9ZYteO2YyFkQ91sqJsd6u4NdDS8q1p2_9Asy9bZn_cHheKIXg</recordid><startdate>20220520</startdate><enddate>20220520</enddate><creator>Mohamed‐Ibrahim, Nur Amalina binte</creator><creator>Kheng Boong, Siew</creator><creator>Zhong Ang, Zhi</creator><creator>Shiuan Ng, Li</creator><creator>Tan, Jia Ying Charlene</creator><creator>Chong, Carice</creator><creator>Kwee Lee, Hiang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0823-4111</orcidid></search><sort><creationdate>20220520</creationdate><title>Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit</title><author>Mohamed‐Ibrahim, Nur Amalina binte ; Kheng Boong, Siew ; Zhong Ang, Zhi ; Shiuan Ng, Li ; Tan, Jia Ying Charlene ; Chong, Carice ; Kwee Lee, Hiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-72b7f15a896901eb2f25ac548034b0a342d94eb268dc5b7edcb38417e9b889b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary layers</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Diffusion layers</topic><topic>diffusion limit</topic><topic>Diffusion rate</topic><topic>dynamic interface</topic><topic>magnetic-responsive</topic><topic>molecule manipulation</topic><topic>nanocatayst</topic><topic>Nanomaterials</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed‐Ibrahim, Nur Amalina binte</creatorcontrib><creatorcontrib>Kheng Boong, Siew</creatorcontrib><creatorcontrib>Zhong Ang, Zhi</creatorcontrib><creatorcontrib>Shiuan Ng, Li</creatorcontrib><creatorcontrib>Tan, Jia Ying Charlene</creatorcontrib><creatorcontrib>Chong, Carice</creatorcontrib><creatorcontrib>Kwee Lee, Hiang</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed‐Ibrahim, Nur Amalina binte</au><au>Kheng Boong, Siew</au><au>Zhong Ang, Zhi</au><au>Shiuan Ng, Li</au><au>Tan, Jia Ying Charlene</au><au>Chong, Carice</au><au>Kwee Lee, Hiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit</atitle><jtitle>ChemCatChem</jtitle><date>2022-05-20</date><risdate>2022</risdate><volume>14</volume><issue>10</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Efficient nanocatalysis requires swift delivery of reactants to catalytic sites, but the presence of diffusion‐dominated, hydrodynamic boundary layers on all heterogeneous catalysts impedes fast chemical transformation. Here, efficient nanocatalysis is achieved by applying a magnetic‐responsive nanocatalyst‐liquid interface to create a vortex‐like flow that rapidly pulls reactants from bulk solution to the catalyst, beyond the diffusion limit. Consequently, our design attains a >90 % degradation efficiency in <5 min with reaction kinetics tunable via the nanocatalyst spin rate. The spinning nanocatalyst notably exhibits reaction kinetics and molecule transfer rates >10‐fold and 30‐fold faster than traditional homogenization methods, respectively. This unique molecule delivery design will complement recent advances in active catalytic nanomaterials to realize ideal nanocatalysis in emerging chemical, energy, and environmental applications.
Dynamic manipulation of a spinning nanocatalyst‐liquid interface accelerates reactants delivery to catalytic sites via a vortex‐like, hydrodynamic flow that originates from the nanocatalytic ensemble. This design consequently achieves efficient nanocatalysis by enabling fast and steady chemical transformations, notably overcoming the formidable diffusion barrier that occurs at the solid‐liquid interface of most heterogeneous (nano)catalysts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202200036</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0823-4111</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2022-05, Vol.14 (10), p.n/a |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_2666852840 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Boundary layers Catalysis Catalysts Diffusion layers diffusion limit Diffusion rate dynamic interface magnetic-responsive molecule manipulation nanocatayst Nanomaterials Reaction kinetics |
title | Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Magnetic%E2%80%90Responsive%20Nanocatalyst%E2%80%90Liquid%20Interface%20for%20Active%20Molecule%20Manipulation%20to%20Boost%20Catalysis%20Beyond%20Diffusion%20Limit&rft.jtitle=ChemCatChem&rft.au=Mohamed%E2%80%90Ibrahim,%20Nur%20Amalina%20binte&rft.date=2022-05-20&rft.volume=14&rft.issue=10&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202200036&rft_dat=%3Cproquest_cross%3E2666852840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666852840&rft_id=info:pmid/&rfr_iscdi=true |