Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit

Efficient nanocatalysis requires swift delivery of reactants to catalytic sites, but the presence of diffusion‐dominated, hydrodynamic boundary layers on all heterogeneous catalysts impedes fast chemical transformation. Here, efficient nanocatalysis is achieved by applying a magnetic‐responsive nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2022-05, Vol.14 (10), p.n/a
Hauptverfasser: Mohamed‐Ibrahim, Nur Amalina binte, Kheng Boong, Siew, Zhong Ang, Zhi, Shiuan Ng, Li, Tan, Jia Ying Charlene, Chong, Carice, Kwee Lee, Hiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title ChemCatChem
container_volume 14
creator Mohamed‐Ibrahim, Nur Amalina binte
Kheng Boong, Siew
Zhong Ang, Zhi
Shiuan Ng, Li
Tan, Jia Ying Charlene
Chong, Carice
Kwee Lee, Hiang
description Efficient nanocatalysis requires swift delivery of reactants to catalytic sites, but the presence of diffusion‐dominated, hydrodynamic boundary layers on all heterogeneous catalysts impedes fast chemical transformation. Here, efficient nanocatalysis is achieved by applying a magnetic‐responsive nanocatalyst‐liquid interface to create a vortex‐like flow that rapidly pulls reactants from bulk solution to the catalyst, beyond the diffusion limit. Consequently, our design attains a >90 % degradation efficiency in 10‐fold and 30‐fold faster than traditional homogenization methods, respectively. This unique molecule delivery design will complement recent advances in active catalytic nanomaterials to realize ideal nanocatalysis in emerging chemical, energy, and environmental applications. Dynamic manipulation of a spinning nanocatalyst‐liquid interface accelerates reactants delivery to catalytic sites via a vortex‐like, hydrodynamic flow that originates from the nanocatalytic ensemble. This design consequently achieves efficient nanocatalysis by enabling fast and steady chemical transformations, notably overcoming the formidable diffusion barrier that occurs at the solid‐liquid interface of most heterogeneous (nano)catalysts.
doi_str_mv 10.1002/cctc.202200036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666852840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666852840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-72b7f15a896901eb2f25ac548034b0a342d94eb268dc5b7edcb38417e9b889b03</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltibnGcxLHHNvxVCiChMluO41SuUju1HVA2VjaekSchUVAZme7Rvd85VzpBcBnCeQghuhbCizmCCEEII3wUTEKC01lEKD0-aAJPgzPnthBiGqXJJPhcNE3dKb0Bj3yjpVfi--PrRbrGaKfeJHji2gjued05319ytW9VCVbaS1txIUFlLFgIP6CPppairXvBtWramntlNPAGLI1xHmRjinJgKTujS3Cjqqp1A5OrnfLnwUnFaycvfuc0eL27XWcPs_z5fpUt8pmIkhTPUlSkVZhwQjGFoSxQhRIukpjAKC4gj2JU0rhfY1KKpEhlKYqIxGEqaUEILWA0Da7G3MaafSudZ1vTWt2_ZAhjTBJE4oGaj5SwxjkrK9ZYteO2YyFkQ91sqJsd6u4NdDS8q1p2_9Asy9bZn_cHheKIXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666852840</pqid></control><display><type>article</type><title>Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mohamed‐Ibrahim, Nur Amalina binte ; Kheng Boong, Siew ; Zhong Ang, Zhi ; Shiuan Ng, Li ; Tan, Jia Ying Charlene ; Chong, Carice ; Kwee Lee, Hiang</creator><creatorcontrib>Mohamed‐Ibrahim, Nur Amalina binte ; Kheng Boong, Siew ; Zhong Ang, Zhi ; Shiuan Ng, Li ; Tan, Jia Ying Charlene ; Chong, Carice ; Kwee Lee, Hiang</creatorcontrib><description>Efficient nanocatalysis requires swift delivery of reactants to catalytic sites, but the presence of diffusion‐dominated, hydrodynamic boundary layers on all heterogeneous catalysts impedes fast chemical transformation. Here, efficient nanocatalysis is achieved by applying a magnetic‐responsive nanocatalyst‐liquid interface to create a vortex‐like flow that rapidly pulls reactants from bulk solution to the catalyst, beyond the diffusion limit. Consequently, our design attains a &gt;90 % degradation efficiency in &lt;5 min with reaction kinetics tunable via the nanocatalyst spin rate. The spinning nanocatalyst notably exhibits reaction kinetics and molecule transfer rates &gt;10‐fold and 30‐fold faster than traditional homogenization methods, respectively. This unique molecule delivery design will complement recent advances in active catalytic nanomaterials to realize ideal nanocatalysis in emerging chemical, energy, and environmental applications. Dynamic manipulation of a spinning nanocatalyst‐liquid interface accelerates reactants delivery to catalytic sites via a vortex‐like, hydrodynamic flow that originates from the nanocatalytic ensemble. This design consequently achieves efficient nanocatalysis by enabling fast and steady chemical transformations, notably overcoming the formidable diffusion barrier that occurs at the solid‐liquid interface of most heterogeneous (nano)catalysts.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202200036</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boundary layers ; Catalysis ; Catalysts ; Diffusion layers ; diffusion limit ; Diffusion rate ; dynamic interface ; magnetic-responsive ; molecule manipulation ; nanocatayst ; Nanomaterials ; Reaction kinetics</subject><ispartof>ChemCatChem, 2022-05, Vol.14 (10), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-72b7f15a896901eb2f25ac548034b0a342d94eb268dc5b7edcb38417e9b889b03</citedby><cites>FETCH-LOGICAL-c3576-72b7f15a896901eb2f25ac548034b0a342d94eb268dc5b7edcb38417e9b889b03</cites><orcidid>0000-0003-0823-4111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202200036$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202200036$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Mohamed‐Ibrahim, Nur Amalina binte</creatorcontrib><creatorcontrib>Kheng Boong, Siew</creatorcontrib><creatorcontrib>Zhong Ang, Zhi</creatorcontrib><creatorcontrib>Shiuan Ng, Li</creatorcontrib><creatorcontrib>Tan, Jia Ying Charlene</creatorcontrib><creatorcontrib>Chong, Carice</creatorcontrib><creatorcontrib>Kwee Lee, Hiang</creatorcontrib><title>Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit</title><title>ChemCatChem</title><description>Efficient nanocatalysis requires swift delivery of reactants to catalytic sites, but the presence of diffusion‐dominated, hydrodynamic boundary layers on all heterogeneous catalysts impedes fast chemical transformation. Here, efficient nanocatalysis is achieved by applying a magnetic‐responsive nanocatalyst‐liquid interface to create a vortex‐like flow that rapidly pulls reactants from bulk solution to the catalyst, beyond the diffusion limit. Consequently, our design attains a &gt;90 % degradation efficiency in &lt;5 min with reaction kinetics tunable via the nanocatalyst spin rate. The spinning nanocatalyst notably exhibits reaction kinetics and molecule transfer rates &gt;10‐fold and 30‐fold faster than traditional homogenization methods, respectively. This unique molecule delivery design will complement recent advances in active catalytic nanomaterials to realize ideal nanocatalysis in emerging chemical, energy, and environmental applications. Dynamic manipulation of a spinning nanocatalyst‐liquid interface accelerates reactants delivery to catalytic sites via a vortex‐like, hydrodynamic flow that originates from the nanocatalytic ensemble. This design consequently achieves efficient nanocatalysis by enabling fast and steady chemical transformations, notably overcoming the formidable diffusion barrier that occurs at the solid‐liquid interface of most heterogeneous (nano)catalysts.</description><subject>Boundary layers</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Diffusion layers</subject><subject>diffusion limit</subject><subject>Diffusion rate</subject><subject>dynamic interface</subject><subject>magnetic-responsive</subject><subject>molecule manipulation</subject><subject>nanocatayst</subject><subject>Nanomaterials</subject><subject>Reaction kinetics</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEEqWwMltibnGcxLHHNvxVCiChMluO41SuUju1HVA2VjaekSchUVAZme7Rvd85VzpBcBnCeQghuhbCizmCCEEII3wUTEKC01lEKD0-aAJPgzPnthBiGqXJJPhcNE3dKb0Bj3yjpVfi--PrRbrGaKfeJHji2gjued05319ytW9VCVbaS1txIUFlLFgIP6CPppairXvBtWramntlNPAGLI1xHmRjinJgKTujS3Cjqqp1A5OrnfLnwUnFaycvfuc0eL27XWcPs_z5fpUt8pmIkhTPUlSkVZhwQjGFoSxQhRIukpjAKC4gj2JU0rhfY1KKpEhlKYqIxGEqaUEILWA0Da7G3MaafSudZ1vTWt2_ZAhjTBJE4oGaj5SwxjkrK9ZYteO2YyFkQ91sqJsd6u4NdDS8q1p2_9Asy9bZn_cHheKIXg</recordid><startdate>20220520</startdate><enddate>20220520</enddate><creator>Mohamed‐Ibrahim, Nur Amalina binte</creator><creator>Kheng Boong, Siew</creator><creator>Zhong Ang, Zhi</creator><creator>Shiuan Ng, Li</creator><creator>Tan, Jia Ying Charlene</creator><creator>Chong, Carice</creator><creator>Kwee Lee, Hiang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0823-4111</orcidid></search><sort><creationdate>20220520</creationdate><title>Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit</title><author>Mohamed‐Ibrahim, Nur Amalina binte ; Kheng Boong, Siew ; Zhong Ang, Zhi ; Shiuan Ng, Li ; Tan, Jia Ying Charlene ; Chong, Carice ; Kwee Lee, Hiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-72b7f15a896901eb2f25ac548034b0a342d94eb268dc5b7edcb38417e9b889b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary layers</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Diffusion layers</topic><topic>diffusion limit</topic><topic>Diffusion rate</topic><topic>dynamic interface</topic><topic>magnetic-responsive</topic><topic>molecule manipulation</topic><topic>nanocatayst</topic><topic>Nanomaterials</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed‐Ibrahim, Nur Amalina binte</creatorcontrib><creatorcontrib>Kheng Boong, Siew</creatorcontrib><creatorcontrib>Zhong Ang, Zhi</creatorcontrib><creatorcontrib>Shiuan Ng, Li</creatorcontrib><creatorcontrib>Tan, Jia Ying Charlene</creatorcontrib><creatorcontrib>Chong, Carice</creatorcontrib><creatorcontrib>Kwee Lee, Hiang</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed‐Ibrahim, Nur Amalina binte</au><au>Kheng Boong, Siew</au><au>Zhong Ang, Zhi</au><au>Shiuan Ng, Li</au><au>Tan, Jia Ying Charlene</au><au>Chong, Carice</au><au>Kwee Lee, Hiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit</atitle><jtitle>ChemCatChem</jtitle><date>2022-05-20</date><risdate>2022</risdate><volume>14</volume><issue>10</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Efficient nanocatalysis requires swift delivery of reactants to catalytic sites, but the presence of diffusion‐dominated, hydrodynamic boundary layers on all heterogeneous catalysts impedes fast chemical transformation. Here, efficient nanocatalysis is achieved by applying a magnetic‐responsive nanocatalyst‐liquid interface to create a vortex‐like flow that rapidly pulls reactants from bulk solution to the catalyst, beyond the diffusion limit. Consequently, our design attains a &gt;90 % degradation efficiency in &lt;5 min with reaction kinetics tunable via the nanocatalyst spin rate. The spinning nanocatalyst notably exhibits reaction kinetics and molecule transfer rates &gt;10‐fold and 30‐fold faster than traditional homogenization methods, respectively. This unique molecule delivery design will complement recent advances in active catalytic nanomaterials to realize ideal nanocatalysis in emerging chemical, energy, and environmental applications. Dynamic manipulation of a spinning nanocatalyst‐liquid interface accelerates reactants delivery to catalytic sites via a vortex‐like, hydrodynamic flow that originates from the nanocatalytic ensemble. This design consequently achieves efficient nanocatalysis by enabling fast and steady chemical transformations, notably overcoming the formidable diffusion barrier that occurs at the solid‐liquid interface of most heterogeneous (nano)catalysts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202200036</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0823-4111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2022-05, Vol.14 (10), p.n/a
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2666852840
source Wiley Online Library Journals Frontfile Complete
subjects Boundary layers
Catalysis
Catalysts
Diffusion layers
diffusion limit
Diffusion rate
dynamic interface
magnetic-responsive
molecule manipulation
nanocatayst
Nanomaterials
Reaction kinetics
title Applying Magnetic‐Responsive Nanocatalyst‐Liquid Interface for Active Molecule Manipulation to Boost Catalysis Beyond Diffusion Limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Magnetic%E2%80%90Responsive%20Nanocatalyst%E2%80%90Liquid%20Interface%20for%20Active%20Molecule%20Manipulation%20to%20Boost%20Catalysis%20Beyond%20Diffusion%20Limit&rft.jtitle=ChemCatChem&rft.au=Mohamed%E2%80%90Ibrahim,%20Nur%20Amalina%20binte&rft.date=2022-05-20&rft.volume=14&rft.issue=10&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202200036&rft_dat=%3Cproquest_cross%3E2666852840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666852840&rft_id=info:pmid/&rfr_iscdi=true