A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries
This study employed a data‐driven approach to analyze the long and short‐run nexus between food insecurity, climate and economic shocks, population growth, urbanization, and population displacement for all West African countries by using annual time series data spanning 2000–2016. While the results...
Gespeichert in:
Veröffentlicht in: | Natural resources forum 2022-05, Vol.46 (2), p.157-178 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | Natural resources forum |
container_volume | 46 |
creator | Ntiamoah, Evans Brako Li, Dongmei Ameyaw, Bismark Sarpong, Daniel Bruce Twumasi Ankrah, Martinson Nyamah, Edmond Yeboah |
description | This study employed a data‐driven approach to analyze the long and short‐run nexus between food insecurity, climate and economic shocks, population growth, urbanization, and population displacement for all West African countries by using annual time series data spanning 2000–2016. While the results show a unidirectional causal relationship running from climate and economic shocks, population growth, and urbanization to food insecurity, there exists no causal relationship between population displacement and food insecurity. In accordance with the Sustainable Development Goal 2 of achieving zero hunger for sustainable development, we formulate long short‐term memory (LSTM) recurrent neural network (RNN) algorithm devoid of assumptions to forecast food insecurity for West African countries. Based on the result of our algorithm, we propose food insecurity mitigation pathways for the countries employed in this study. The food insecurity mitigation pathways reveal that strengthening current and future policies that mitigate food insecurity based on our projections is enough to mitigate the triggers of food insecurity in sustainable ways. |
doi_str_mv | 10.1111/1477-8947.12248 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666759164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666759164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3168-7bea9e7c818d32967dd736fb947a0346ac5884c77c5d575341f39fbbb95f23fa3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZmuJddo4TuyEXVRRQKpAQiCWluNH66qNi-0UwopP4Bv5EhKC2DKbkWbunccB4BzFE9TFFKWURnmR0glKkjQ_AKO_yiEYxYhkUZzE-BiceL-OY0RRQkfgrYSSB_718Smd2asa8t3OWS5WMFi4NcEseTD1EmprJTS1V6JxJrSQ1xJ2KqP2ffddOQtXTb1U7hKWUHCvoA-NbKHV8Fn5AEvtjOA1FLapgzPKn4IjzTdenf3mMXiaXz3ObqLF_fXtrFxEAiOSR7RSvFBU5CiXOCkIlZJioqvuKx7jlHCR5XkqKBWZzGiGU6RxoauqKjKdYM3xGFwMc7u3XpruFLa2jau7lSwhhNCsQCTtVNNBJZz13inNds5suWsZilmPl_UwWQ-T_eDtHGRwvJqNav-Ts7vyYT4YvwG7Rn6H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666759164</pqid></control><display><type>article</type><title>A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries</title><source>Wiley Online Library All Journals</source><creator>Ntiamoah, Evans Brako ; Li, Dongmei ; Ameyaw, Bismark ; Sarpong, Daniel Bruce ; Twumasi Ankrah, Martinson ; Nyamah, Edmond Yeboah</creator><creatorcontrib>Ntiamoah, Evans Brako ; Li, Dongmei ; Ameyaw, Bismark ; Sarpong, Daniel Bruce ; Twumasi Ankrah, Martinson ; Nyamah, Edmond Yeboah</creatorcontrib><description>This study employed a data‐driven approach to analyze the long and short‐run nexus between food insecurity, climate and economic shocks, population growth, urbanization, and population displacement for all West African countries by using annual time series data spanning 2000–2016. While the results show a unidirectional causal relationship running from climate and economic shocks, population growth, and urbanization to food insecurity, there exists no causal relationship between population displacement and food insecurity. In accordance with the Sustainable Development Goal 2 of achieving zero hunger for sustainable development, we formulate long short‐term memory (LSTM) recurrent neural network (RNN) algorithm devoid of assumptions to forecast food insecurity for West African countries. Based on the result of our algorithm, we propose food insecurity mitigation pathways for the countries employed in this study. The food insecurity mitigation pathways reveal that strengthening current and future policies that mitigate food insecurity based on our projections is enough to mitigate the triggers of food insecurity in sustainable ways.</description><identifier>ISSN: 0165-0203</identifier><identifier>EISSN: 1477-8947</identifier><identifier>DOI: 10.1111/1477-8947.12248</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Economic shock ; Economics ; Food ; food insecurity ; Food security ; forecasting ; Hunger ; Insecurity ; long short‐term memory (LSTM) ; Mitigation ; Neural networks ; Population growth ; Projections ; Recurrent ; recurrent neural network (RNN) ; Recurrent neural networks ; Sustainability ; Sustainable development ; Time series ; Urbanization ; West Africa</subject><ispartof>Natural resources forum, 2022-05, Vol.46 (2), p.157-178</ispartof><rights>2022 United Nations.</rights><rights>2022 United Nations</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3168-7bea9e7c818d32967dd736fb947a0346ac5884c77c5d575341f39fbbb95f23fa3</citedby><cites>FETCH-LOGICAL-c3168-7bea9e7c818d32967dd736fb947a0346ac5884c77c5d575341f39fbbb95f23fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1477-8947.12248$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1477-8947.12248$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ntiamoah, Evans Brako</creatorcontrib><creatorcontrib>Li, Dongmei</creatorcontrib><creatorcontrib>Ameyaw, Bismark</creatorcontrib><creatorcontrib>Sarpong, Daniel Bruce</creatorcontrib><creatorcontrib>Twumasi Ankrah, Martinson</creatorcontrib><creatorcontrib>Nyamah, Edmond Yeboah</creatorcontrib><title>A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries</title><title>Natural resources forum</title><description>This study employed a data‐driven approach to analyze the long and short‐run nexus between food insecurity, climate and economic shocks, population growth, urbanization, and population displacement for all West African countries by using annual time series data spanning 2000–2016. While the results show a unidirectional causal relationship running from climate and economic shocks, population growth, and urbanization to food insecurity, there exists no causal relationship between population displacement and food insecurity. In accordance with the Sustainable Development Goal 2 of achieving zero hunger for sustainable development, we formulate long short‐term memory (LSTM) recurrent neural network (RNN) algorithm devoid of assumptions to forecast food insecurity for West African countries. Based on the result of our algorithm, we propose food insecurity mitigation pathways for the countries employed in this study. The food insecurity mitigation pathways reveal that strengthening current and future policies that mitigate food insecurity based on our projections is enough to mitigate the triggers of food insecurity in sustainable ways.</description><subject>Algorithms</subject><subject>Economic shock</subject><subject>Economics</subject><subject>Food</subject><subject>food insecurity</subject><subject>Food security</subject><subject>forecasting</subject><subject>Hunger</subject><subject>Insecurity</subject><subject>long short‐term memory (LSTM)</subject><subject>Mitigation</subject><subject>Neural networks</subject><subject>Population growth</subject><subject>Projections</subject><subject>Recurrent</subject><subject>recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Time series</subject><subject>Urbanization</subject><subject>West Africa</subject><issn>0165-0203</issn><issn>1477-8947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZmuJddo4TuyEXVRRQKpAQiCWluNH66qNi-0UwopP4Bv5EhKC2DKbkWbunccB4BzFE9TFFKWURnmR0glKkjQ_AKO_yiEYxYhkUZzE-BiceL-OY0RRQkfgrYSSB_718Smd2asa8t3OWS5WMFi4NcEseTD1EmprJTS1V6JxJrSQ1xJ2KqP2ffddOQtXTb1U7hKWUHCvoA-NbKHV8Fn5AEvtjOA1FLapgzPKn4IjzTdenf3mMXiaXz3ObqLF_fXtrFxEAiOSR7RSvFBU5CiXOCkIlZJioqvuKx7jlHCR5XkqKBWZzGiGU6RxoauqKjKdYM3xGFwMc7u3XpruFLa2jau7lSwhhNCsQCTtVNNBJZz13inNds5suWsZilmPl_UwWQ-T_eDtHGRwvJqNav-Ts7vyYT4YvwG7Rn6H</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Ntiamoah, Evans Brako</creator><creator>Li, Dongmei</creator><creator>Ameyaw, Bismark</creator><creator>Sarpong, Daniel Bruce</creator><creator>Twumasi Ankrah, Martinson</creator><creator>Nyamah, Edmond Yeboah</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope></search><sort><creationdate>202205</creationdate><title>A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries</title><author>Ntiamoah, Evans Brako ; Li, Dongmei ; Ameyaw, Bismark ; Sarpong, Daniel Bruce ; Twumasi Ankrah, Martinson ; Nyamah, Edmond Yeboah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3168-7bea9e7c818d32967dd736fb947a0346ac5884c77c5d575341f39fbbb95f23fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Economic shock</topic><topic>Economics</topic><topic>Food</topic><topic>food insecurity</topic><topic>Food security</topic><topic>forecasting</topic><topic>Hunger</topic><topic>Insecurity</topic><topic>long short‐term memory (LSTM)</topic><topic>Mitigation</topic><topic>Neural networks</topic><topic>Population growth</topic><topic>Projections</topic><topic>Recurrent</topic><topic>recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Time series</topic><topic>Urbanization</topic><topic>West Africa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntiamoah, Evans Brako</creatorcontrib><creatorcontrib>Li, Dongmei</creatorcontrib><creatorcontrib>Ameyaw, Bismark</creatorcontrib><creatorcontrib>Sarpong, Daniel Bruce</creatorcontrib><creatorcontrib>Twumasi Ankrah, Martinson</creatorcontrib><creatorcontrib>Nyamah, Edmond Yeboah</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Natural resources forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntiamoah, Evans Brako</au><au>Li, Dongmei</au><au>Ameyaw, Bismark</au><au>Sarpong, Daniel Bruce</au><au>Twumasi Ankrah, Martinson</au><au>Nyamah, Edmond Yeboah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries</atitle><jtitle>Natural resources forum</jtitle><date>2022-05</date><risdate>2022</risdate><volume>46</volume><issue>2</issue><spage>157</spage><epage>178</epage><pages>157-178</pages><issn>0165-0203</issn><eissn>1477-8947</eissn><abstract>This study employed a data‐driven approach to analyze the long and short‐run nexus between food insecurity, climate and economic shocks, population growth, urbanization, and population displacement for all West African countries by using annual time series data spanning 2000–2016. While the results show a unidirectional causal relationship running from climate and economic shocks, population growth, and urbanization to food insecurity, there exists no causal relationship between population displacement and food insecurity. In accordance with the Sustainable Development Goal 2 of achieving zero hunger for sustainable development, we formulate long short‐term memory (LSTM) recurrent neural network (RNN) algorithm devoid of assumptions to forecast food insecurity for West African countries. Based on the result of our algorithm, we propose food insecurity mitigation pathways for the countries employed in this study. The food insecurity mitigation pathways reveal that strengthening current and future policies that mitigate food insecurity based on our projections is enough to mitigate the triggers of food insecurity in sustainable ways.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1477-8947.12248</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0203 |
ispartof | Natural resources forum, 2022-05, Vol.46 (2), p.157-178 |
issn | 0165-0203 1477-8947 |
language | eng |
recordid | cdi_proquest_journals_2666759164 |
source | Wiley Online Library All Journals |
subjects | Algorithms Economic shock Economics Food food insecurity Food security forecasting Hunger Insecurity long short‐term memory (LSTM) Mitigation Neural networks Population growth Projections Recurrent recurrent neural network (RNN) Recurrent neural networks Sustainability Sustainable development Time series Urbanization West Africa |
title | A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%E2%80%90driven%20approach%20to%20mitigating%20food%20insecurity%20and%20achieving%20zero%20hunger:%20A%20case%20study%20of%20West%20African%20countries&rft.jtitle=Natural%20resources%20forum&rft.au=Ntiamoah,%20Evans%20Brako&rft.date=2022-05&rft.volume=46&rft.issue=2&rft.spage=157&rft.epage=178&rft.pages=157-178&rft.issn=0165-0203&rft.eissn=1477-8947&rft_id=info:doi/10.1111/1477-8947.12248&rft_dat=%3Cproquest_cross%3E2666759164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666759164&rft_id=info:pmid/&rfr_iscdi=true |