A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries

This study employed a data‐driven approach to analyze the long and short‐run nexus between food insecurity, climate and economic shocks, population growth, urbanization, and population displacement for all West African countries by using annual time series data spanning 2000–2016. While the results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural resources forum 2022-05, Vol.46 (2), p.157-178
Hauptverfasser: Ntiamoah, Evans Brako, Li, Dongmei, Ameyaw, Bismark, Sarpong, Daniel Bruce, Twumasi Ankrah, Martinson, Nyamah, Edmond Yeboah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 2
container_start_page 157
container_title Natural resources forum
container_volume 46
creator Ntiamoah, Evans Brako
Li, Dongmei
Ameyaw, Bismark
Sarpong, Daniel Bruce
Twumasi Ankrah, Martinson
Nyamah, Edmond Yeboah
description This study employed a data‐driven approach to analyze the long and short‐run nexus between food insecurity, climate and economic shocks, population growth, urbanization, and population displacement for all West African countries by using annual time series data spanning 2000–2016. While the results show a unidirectional causal relationship running from climate and economic shocks, population growth, and urbanization to food insecurity, there exists no causal relationship between population displacement and food insecurity. In accordance with the Sustainable Development Goal 2 of achieving zero hunger for sustainable development, we formulate long short‐term memory (LSTM) recurrent neural network (RNN) algorithm devoid of assumptions to forecast food insecurity for West African countries. Based on the result of our algorithm, we propose food insecurity mitigation pathways for the countries employed in this study. The food insecurity mitigation pathways reveal that strengthening current and future policies that mitigate food insecurity based on our projections is enough to mitigate the triggers of food insecurity in sustainable ways.
doi_str_mv 10.1111/1477-8947.12248
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666759164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666759164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3168-7bea9e7c818d32967dd736fb947a0346ac5884c77c5d575341f39fbbb95f23fa3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZmuJddo4TuyEXVRRQKpAQiCWluNH66qNi-0UwopP4Bv5EhKC2DKbkWbunccB4BzFE9TFFKWURnmR0glKkjQ_AKO_yiEYxYhkUZzE-BiceL-OY0RRQkfgrYSSB_718Smd2asa8t3OWS5WMFi4NcEseTD1EmprJTS1V6JxJrSQ1xJ2KqP2ffddOQtXTb1U7hKWUHCvoA-NbKHV8Fn5AEvtjOA1FLapgzPKn4IjzTdenf3mMXiaXz3ObqLF_fXtrFxEAiOSR7RSvFBU5CiXOCkIlZJioqvuKx7jlHCR5XkqKBWZzGiGU6RxoauqKjKdYM3xGFwMc7u3XpruFLa2jau7lSwhhNCsQCTtVNNBJZz13inNds5suWsZilmPl_UwWQ-T_eDtHGRwvJqNav-Ts7vyYT4YvwG7Rn6H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666759164</pqid></control><display><type>article</type><title>A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries</title><source>Wiley Online Library All Journals</source><creator>Ntiamoah, Evans Brako ; Li, Dongmei ; Ameyaw, Bismark ; Sarpong, Daniel Bruce ; Twumasi Ankrah, Martinson ; Nyamah, Edmond Yeboah</creator><creatorcontrib>Ntiamoah, Evans Brako ; Li, Dongmei ; Ameyaw, Bismark ; Sarpong, Daniel Bruce ; Twumasi Ankrah, Martinson ; Nyamah, Edmond Yeboah</creatorcontrib><description>This study employed a data‐driven approach to analyze the long and short‐run nexus between food insecurity, climate and economic shocks, population growth, urbanization, and population displacement for all West African countries by using annual time series data spanning 2000–2016. While the results show a unidirectional causal relationship running from climate and economic shocks, population growth, and urbanization to food insecurity, there exists no causal relationship between population displacement and food insecurity. In accordance with the Sustainable Development Goal 2 of achieving zero hunger for sustainable development, we formulate long short‐term memory (LSTM) recurrent neural network (RNN) algorithm devoid of assumptions to forecast food insecurity for West African countries. Based on the result of our algorithm, we propose food insecurity mitigation pathways for the countries employed in this study. The food insecurity mitigation pathways reveal that strengthening current and future policies that mitigate food insecurity based on our projections is enough to mitigate the triggers of food insecurity in sustainable ways.</description><identifier>ISSN: 0165-0203</identifier><identifier>EISSN: 1477-8947</identifier><identifier>DOI: 10.1111/1477-8947.12248</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Economic shock ; Economics ; Food ; food insecurity ; Food security ; forecasting ; Hunger ; Insecurity ; long short‐term memory (LSTM) ; Mitigation ; Neural networks ; Population growth ; Projections ; Recurrent ; recurrent neural network (RNN) ; Recurrent neural networks ; Sustainability ; Sustainable development ; Time series ; Urbanization ; West Africa</subject><ispartof>Natural resources forum, 2022-05, Vol.46 (2), p.157-178</ispartof><rights>2022 United Nations.</rights><rights>2022 United Nations</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3168-7bea9e7c818d32967dd736fb947a0346ac5884c77c5d575341f39fbbb95f23fa3</citedby><cites>FETCH-LOGICAL-c3168-7bea9e7c818d32967dd736fb947a0346ac5884c77c5d575341f39fbbb95f23fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1477-8947.12248$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1477-8947.12248$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ntiamoah, Evans Brako</creatorcontrib><creatorcontrib>Li, Dongmei</creatorcontrib><creatorcontrib>Ameyaw, Bismark</creatorcontrib><creatorcontrib>Sarpong, Daniel Bruce</creatorcontrib><creatorcontrib>Twumasi Ankrah, Martinson</creatorcontrib><creatorcontrib>Nyamah, Edmond Yeboah</creatorcontrib><title>A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries</title><title>Natural resources forum</title><description>This study employed a data‐driven approach to analyze the long and short‐run nexus between food insecurity, climate and economic shocks, population growth, urbanization, and population displacement for all West African countries by using annual time series data spanning 2000–2016. While the results show a unidirectional causal relationship running from climate and economic shocks, population growth, and urbanization to food insecurity, there exists no causal relationship between population displacement and food insecurity. In accordance with the Sustainable Development Goal 2 of achieving zero hunger for sustainable development, we formulate long short‐term memory (LSTM) recurrent neural network (RNN) algorithm devoid of assumptions to forecast food insecurity for West African countries. Based on the result of our algorithm, we propose food insecurity mitigation pathways for the countries employed in this study. The food insecurity mitigation pathways reveal that strengthening current and future policies that mitigate food insecurity based on our projections is enough to mitigate the triggers of food insecurity in sustainable ways.</description><subject>Algorithms</subject><subject>Economic shock</subject><subject>Economics</subject><subject>Food</subject><subject>food insecurity</subject><subject>Food security</subject><subject>forecasting</subject><subject>Hunger</subject><subject>Insecurity</subject><subject>long short‐term memory (LSTM)</subject><subject>Mitigation</subject><subject>Neural networks</subject><subject>Population growth</subject><subject>Projections</subject><subject>Recurrent</subject><subject>recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Time series</subject><subject>Urbanization</subject><subject>West Africa</subject><issn>0165-0203</issn><issn>1477-8947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZmuJddo4TuyEXVRRQKpAQiCWluNH66qNi-0UwopP4Bv5EhKC2DKbkWbunccB4BzFE9TFFKWURnmR0glKkjQ_AKO_yiEYxYhkUZzE-BiceL-OY0RRQkfgrYSSB_718Smd2asa8t3OWS5WMFi4NcEseTD1EmprJTS1V6JxJrSQ1xJ2KqP2ffddOQtXTb1U7hKWUHCvoA-NbKHV8Fn5AEvtjOA1FLapgzPKn4IjzTdenf3mMXiaXz3ObqLF_fXtrFxEAiOSR7RSvFBU5CiXOCkIlZJioqvuKx7jlHCR5XkqKBWZzGiGU6RxoauqKjKdYM3xGFwMc7u3XpruFLa2jau7lSwhhNCsQCTtVNNBJZz13inNds5suWsZilmPl_UwWQ-T_eDtHGRwvJqNav-Ts7vyYT4YvwG7Rn6H</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Ntiamoah, Evans Brako</creator><creator>Li, Dongmei</creator><creator>Ameyaw, Bismark</creator><creator>Sarpong, Daniel Bruce</creator><creator>Twumasi Ankrah, Martinson</creator><creator>Nyamah, Edmond Yeboah</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope></search><sort><creationdate>202205</creationdate><title>A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries</title><author>Ntiamoah, Evans Brako ; Li, Dongmei ; Ameyaw, Bismark ; Sarpong, Daniel Bruce ; Twumasi Ankrah, Martinson ; Nyamah, Edmond Yeboah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3168-7bea9e7c818d32967dd736fb947a0346ac5884c77c5d575341f39fbbb95f23fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Economic shock</topic><topic>Economics</topic><topic>Food</topic><topic>food insecurity</topic><topic>Food security</topic><topic>forecasting</topic><topic>Hunger</topic><topic>Insecurity</topic><topic>long short‐term memory (LSTM)</topic><topic>Mitigation</topic><topic>Neural networks</topic><topic>Population growth</topic><topic>Projections</topic><topic>Recurrent</topic><topic>recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Time series</topic><topic>Urbanization</topic><topic>West Africa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntiamoah, Evans Brako</creatorcontrib><creatorcontrib>Li, Dongmei</creatorcontrib><creatorcontrib>Ameyaw, Bismark</creatorcontrib><creatorcontrib>Sarpong, Daniel Bruce</creatorcontrib><creatorcontrib>Twumasi Ankrah, Martinson</creatorcontrib><creatorcontrib>Nyamah, Edmond Yeboah</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Natural resources forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntiamoah, Evans Brako</au><au>Li, Dongmei</au><au>Ameyaw, Bismark</au><au>Sarpong, Daniel Bruce</au><au>Twumasi Ankrah, Martinson</au><au>Nyamah, Edmond Yeboah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries</atitle><jtitle>Natural resources forum</jtitle><date>2022-05</date><risdate>2022</risdate><volume>46</volume><issue>2</issue><spage>157</spage><epage>178</epage><pages>157-178</pages><issn>0165-0203</issn><eissn>1477-8947</eissn><abstract>This study employed a data‐driven approach to analyze the long and short‐run nexus between food insecurity, climate and economic shocks, population growth, urbanization, and population displacement for all West African countries by using annual time series data spanning 2000–2016. While the results show a unidirectional causal relationship running from climate and economic shocks, population growth, and urbanization to food insecurity, there exists no causal relationship between population displacement and food insecurity. In accordance with the Sustainable Development Goal 2 of achieving zero hunger for sustainable development, we formulate long short‐term memory (LSTM) recurrent neural network (RNN) algorithm devoid of assumptions to forecast food insecurity for West African countries. Based on the result of our algorithm, we propose food insecurity mitigation pathways for the countries employed in this study. The food insecurity mitigation pathways reveal that strengthening current and future policies that mitigate food insecurity based on our projections is enough to mitigate the triggers of food insecurity in sustainable ways.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1477-8947.12248</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0203
ispartof Natural resources forum, 2022-05, Vol.46 (2), p.157-178
issn 0165-0203
1477-8947
language eng
recordid cdi_proquest_journals_2666759164
source Wiley Online Library All Journals
subjects Algorithms
Economic shock
Economics
Food
food insecurity
Food security
forecasting
Hunger
Insecurity
long short‐term memory (LSTM)
Mitigation
Neural networks
Population growth
Projections
Recurrent
recurrent neural network (RNN)
Recurrent neural networks
Sustainability
Sustainable development
Time series
Urbanization
West Africa
title A data‐driven approach to mitigating food insecurity and achieving zero hunger: A case study of West African countries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%E2%80%90driven%20approach%20to%20mitigating%20food%20insecurity%20and%20achieving%20zero%20hunger:%20A%20case%20study%20of%20West%20African%20countries&rft.jtitle=Natural%20resources%20forum&rft.au=Ntiamoah,%20Evans%20Brako&rft.date=2022-05&rft.volume=46&rft.issue=2&rft.spage=157&rft.epage=178&rft.pages=157-178&rft.issn=0165-0203&rft.eissn=1477-8947&rft_id=info:doi/10.1111/1477-8947.12248&rft_dat=%3Cproquest_cross%3E2666759164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666759164&rft_id=info:pmid/&rfr_iscdi=true