Fatigue detection using artificial intelligence

Over the years the development of computer technology has benefited drivers, often in the form of smart systems. In a significant number of car collisions, tiredness is a major factor. Road collisions are the world's most frequent types of injuries and fatalities, and the main causes are typica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kshirsagar, Pravin R., Dadheech, Pankaj, Yuvaraj, T., Moorthy, C. A. Sathiya, Upadhyaya, Makarand
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2393
creator Kshirsagar, Pravin R.
Dadheech, Pankaj
Yuvaraj, T.
Moorthy, C. A. Sathiya
Upadhyaya, Makarand
description Over the years the development of computer technology has benefited drivers, often in the form of smart systems. In a significant number of car collisions, tiredness is a major factor. Road collisions are the world's most frequent types of injuries and fatalities, and the main causes are typically drunken, sleepy, and rudely behavioral. The main purpose of this article is to define common sources of knowledge for the detection of drowsiness to evaluate when a specified degree of drowsiness is achieved. Fatigue was one of the key techniques for detecting or tracking augmented reality. In particular, driver drowsiness identification can protect riders from drowsy riding collisions. This technology relies on face detection to warn the driver of somnolence or to avoid accidents in traffic.
doi_str_mv 10.1063/5.0074121
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2666681465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666681465</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98f-5aa8bf427a79541c0ffa0a601b53382208dde3e7e8c00de075f4548e38d44563</originalsourceid><addsrcrecordid>eNp9kE1Lw0AYhBdRMFYP_oOANyHtu9-boxSrQsGDHrwt2-TdsCUmMbsR_PemtODNuczlYWYYQm4pLCkovpJLAC0oo2cko1LSQiuqzkkGUIqCCf5xSa5i3AOwUmuTkdXGpdBMmNeYsEqh7_Iphq7J3ZiCD1VwbR66hG0bGuwqvCYX3rURb06-IG-bx_f1c7F9fXpZP2yLoTS-kM6ZnRdMO11KQSvw3oFTQHeSc8MYmLpGjhpNBVAjaOmFFAa5qYWQii_I3TF1GPuvCWOy-34au7nQMjXLUKHkTN0fqViF5A7b7TCGTzf-WAr2cIeV9nTHf_B3P_6Bdqg9_wUIvF9J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2666681465</pqid></control><display><type>conference_proceeding</type><title>Fatigue detection using artificial intelligence</title><source>AIP Journals Complete</source><creator>Kshirsagar, Pravin R. ; Dadheech, Pankaj ; Yuvaraj, T. ; Moorthy, C. A. Sathiya ; Upadhyaya, Makarand</creator><contributor>Ghadai, Ranjan ; Kalita, Kanak ; Ramachandran, M.</contributor><creatorcontrib>Kshirsagar, Pravin R. ; Dadheech, Pankaj ; Yuvaraj, T. ; Moorthy, C. A. Sathiya ; Upadhyaya, Makarand ; Ghadai, Ranjan ; Kalita, Kanak ; Ramachandran, M.</creatorcontrib><description>Over the years the development of computer technology has benefited drivers, often in the form of smart systems. In a significant number of car collisions, tiredness is a major factor. Road collisions are the world's most frequent types of injuries and fatalities, and the main causes are typically drunken, sleepy, and rudely behavioral. The main purpose of this article is to define common sources of knowledge for the detection of drowsiness to evaluate when a specified degree of drowsiness is achieved. Fatigue was one of the key techniques for detecting or tracking augmented reality. In particular, driver drowsiness identification can protect riders from drowsy riding collisions. This technology relies on face detection to warn the driver of somnolence or to avoid accidents in traffic.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0074121</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Augmented reality ; Collisions ; Driver fatigue ; Face recognition ; Sleepiness</subject><ispartof>AIP conference proceedings, 2022, Vol.2393 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0074121$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4511,23929,23930,25139,27923,27924,76255</link.rule.ids></links><search><contributor>Ghadai, Ranjan</contributor><contributor>Kalita, Kanak</contributor><contributor>Ramachandran, M.</contributor><creatorcontrib>Kshirsagar, Pravin R.</creatorcontrib><creatorcontrib>Dadheech, Pankaj</creatorcontrib><creatorcontrib>Yuvaraj, T.</creatorcontrib><creatorcontrib>Moorthy, C. A. Sathiya</creatorcontrib><creatorcontrib>Upadhyaya, Makarand</creatorcontrib><title>Fatigue detection using artificial intelligence</title><title>AIP conference proceedings</title><description>Over the years the development of computer technology has benefited drivers, often in the form of smart systems. In a significant number of car collisions, tiredness is a major factor. Road collisions are the world's most frequent types of injuries and fatalities, and the main causes are typically drunken, sleepy, and rudely behavioral. The main purpose of this article is to define common sources of knowledge for the detection of drowsiness to evaluate when a specified degree of drowsiness is achieved. Fatigue was one of the key techniques for detecting or tracking augmented reality. In particular, driver drowsiness identification can protect riders from drowsy riding collisions. This technology relies on face detection to warn the driver of somnolence or to avoid accidents in traffic.</description><subject>Artificial intelligence</subject><subject>Augmented reality</subject><subject>Collisions</subject><subject>Driver fatigue</subject><subject>Face recognition</subject><subject>Sleepiness</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1Lw0AYhBdRMFYP_oOANyHtu9-boxSrQsGDHrwt2-TdsCUmMbsR_PemtODNuczlYWYYQm4pLCkovpJLAC0oo2cko1LSQiuqzkkGUIqCCf5xSa5i3AOwUmuTkdXGpdBMmNeYsEqh7_Iphq7J3ZiCD1VwbR66hG0bGuwqvCYX3rURb06-IG-bx_f1c7F9fXpZP2yLoTS-kM6ZnRdMO11KQSvw3oFTQHeSc8MYmLpGjhpNBVAjaOmFFAa5qYWQii_I3TF1GPuvCWOy-34au7nQMjXLUKHkTN0fqViF5A7b7TCGTzf-WAr2cIeV9nTHf_B3P_6Bdqg9_wUIvF9J</recordid><startdate>20220519</startdate><enddate>20220519</enddate><creator>Kshirsagar, Pravin R.</creator><creator>Dadheech, Pankaj</creator><creator>Yuvaraj, T.</creator><creator>Moorthy, C. A. Sathiya</creator><creator>Upadhyaya, Makarand</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220519</creationdate><title>Fatigue detection using artificial intelligence</title><author>Kshirsagar, Pravin R. ; Dadheech, Pankaj ; Yuvaraj, T. ; Moorthy, C. A. Sathiya ; Upadhyaya, Makarand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98f-5aa8bf427a79541c0ffa0a601b53382208dde3e7e8c00de075f4548e38d44563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Augmented reality</topic><topic>Collisions</topic><topic>Driver fatigue</topic><topic>Face recognition</topic><topic>Sleepiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kshirsagar, Pravin R.</creatorcontrib><creatorcontrib>Dadheech, Pankaj</creatorcontrib><creatorcontrib>Yuvaraj, T.</creatorcontrib><creatorcontrib>Moorthy, C. A. Sathiya</creatorcontrib><creatorcontrib>Upadhyaya, Makarand</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kshirsagar, Pravin R.</au><au>Dadheech, Pankaj</au><au>Yuvaraj, T.</au><au>Moorthy, C. A. Sathiya</au><au>Upadhyaya, Makarand</au><au>Ghadai, Ranjan</au><au>Kalita, Kanak</au><au>Ramachandran, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fatigue detection using artificial intelligence</atitle><btitle>AIP conference proceedings</btitle><date>2022-05-19</date><risdate>2022</risdate><volume>2393</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Over the years the development of computer technology has benefited drivers, often in the form of smart systems. In a significant number of car collisions, tiredness is a major factor. Road collisions are the world's most frequent types of injuries and fatalities, and the main causes are typically drunken, sleepy, and rudely behavioral. The main purpose of this article is to define common sources of knowledge for the detection of drowsiness to evaluate when a specified degree of drowsiness is achieved. Fatigue was one of the key techniques for detecting or tracking augmented reality. In particular, driver drowsiness identification can protect riders from drowsy riding collisions. This technology relies on face detection to warn the driver of somnolence or to avoid accidents in traffic.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0074121</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2393 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2666681465
source AIP Journals Complete
subjects Artificial intelligence
Augmented reality
Collisions
Driver fatigue
Face recognition
Sleepiness
title Fatigue detection using artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fatigue%20detection%20using%20artificial%20intelligence&rft.btitle=AIP%20conference%20proceedings&rft.au=Kshirsagar,%20Pravin%20R.&rft.date=2022-05-19&rft.volume=2393&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0074121&rft_dat=%3Cproquest_scita%3E2666681465%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666681465&rft_id=info:pmid/&rfr_iscdi=true