Fatigue detection using artificial intelligence
Over the years the development of computer technology has benefited drivers, often in the form of smart systems. In a significant number of car collisions, tiredness is a major factor. Road collisions are the world's most frequent types of injuries and fatalities, and the main causes are typica...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2393 |
creator | Kshirsagar, Pravin R. Dadheech, Pankaj Yuvaraj, T. Moorthy, C. A. Sathiya Upadhyaya, Makarand |
description | Over the years the development of computer technology has benefited drivers, often in the form of smart systems. In a significant number of car collisions, tiredness is a major factor. Road collisions are the world's most frequent types of injuries and fatalities, and the main causes are typically drunken, sleepy, and rudely behavioral. The main purpose of this article is to define common sources of knowledge for the detection of drowsiness to evaluate when a specified degree of drowsiness is achieved. Fatigue was one of the key techniques for detecting or tracking augmented reality. In particular, driver drowsiness identification can protect riders from drowsy riding collisions. This technology relies on face detection to warn the driver of somnolence or to avoid accidents in traffic. |
doi_str_mv | 10.1063/5.0074121 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2666681465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666681465</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98f-5aa8bf427a79541c0ffa0a601b53382208dde3e7e8c00de075f4548e38d44563</originalsourceid><addsrcrecordid>eNp9kE1Lw0AYhBdRMFYP_oOANyHtu9-boxSrQsGDHrwt2-TdsCUmMbsR_PemtODNuczlYWYYQm4pLCkovpJLAC0oo2cko1LSQiuqzkkGUIqCCf5xSa5i3AOwUmuTkdXGpdBMmNeYsEqh7_Iphq7J3ZiCD1VwbR66hG0bGuwqvCYX3rURb06-IG-bx_f1c7F9fXpZP2yLoTS-kM6ZnRdMO11KQSvw3oFTQHeSc8MYmLpGjhpNBVAjaOmFFAa5qYWQii_I3TF1GPuvCWOy-34au7nQMjXLUKHkTN0fqViF5A7b7TCGTzf-WAr2cIeV9nTHf_B3P_6Bdqg9_wUIvF9J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2666681465</pqid></control><display><type>conference_proceeding</type><title>Fatigue detection using artificial intelligence</title><source>AIP Journals Complete</source><creator>Kshirsagar, Pravin R. ; Dadheech, Pankaj ; Yuvaraj, T. ; Moorthy, C. A. Sathiya ; Upadhyaya, Makarand</creator><contributor>Ghadai, Ranjan ; Kalita, Kanak ; Ramachandran, M.</contributor><creatorcontrib>Kshirsagar, Pravin R. ; Dadheech, Pankaj ; Yuvaraj, T. ; Moorthy, C. A. Sathiya ; Upadhyaya, Makarand ; Ghadai, Ranjan ; Kalita, Kanak ; Ramachandran, M.</creatorcontrib><description>Over the years the development of computer technology has benefited drivers, often in the form of smart systems. In a significant number of car collisions, tiredness is a major factor. Road collisions are the world's most frequent types of injuries and fatalities, and the main causes are typically drunken, sleepy, and rudely behavioral. The main purpose of this article is to define common sources of knowledge for the detection of drowsiness to evaluate when a specified degree of drowsiness is achieved. Fatigue was one of the key techniques for detecting or tracking augmented reality. In particular, driver drowsiness identification can protect riders from drowsy riding collisions. This technology relies on face detection to warn the driver of somnolence or to avoid accidents in traffic.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0074121</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Augmented reality ; Collisions ; Driver fatigue ; Face recognition ; Sleepiness</subject><ispartof>AIP conference proceedings, 2022, Vol.2393 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0074121$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4511,23929,23930,25139,27923,27924,76255</link.rule.ids></links><search><contributor>Ghadai, Ranjan</contributor><contributor>Kalita, Kanak</contributor><contributor>Ramachandran, M.</contributor><creatorcontrib>Kshirsagar, Pravin R.</creatorcontrib><creatorcontrib>Dadheech, Pankaj</creatorcontrib><creatorcontrib>Yuvaraj, T.</creatorcontrib><creatorcontrib>Moorthy, C. A. Sathiya</creatorcontrib><creatorcontrib>Upadhyaya, Makarand</creatorcontrib><title>Fatigue detection using artificial intelligence</title><title>AIP conference proceedings</title><description>Over the years the development of computer technology has benefited drivers, often in the form of smart systems. In a significant number of car collisions, tiredness is a major factor. Road collisions are the world's most frequent types of injuries and fatalities, and the main causes are typically drunken, sleepy, and rudely behavioral. The main purpose of this article is to define common sources of knowledge for the detection of drowsiness to evaluate when a specified degree of drowsiness is achieved. Fatigue was one of the key techniques for detecting or tracking augmented reality. In particular, driver drowsiness identification can protect riders from drowsy riding collisions. This technology relies on face detection to warn the driver of somnolence or to avoid accidents in traffic.</description><subject>Artificial intelligence</subject><subject>Augmented reality</subject><subject>Collisions</subject><subject>Driver fatigue</subject><subject>Face recognition</subject><subject>Sleepiness</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1Lw0AYhBdRMFYP_oOANyHtu9-boxSrQsGDHrwt2-TdsCUmMbsR_PemtODNuczlYWYYQm4pLCkovpJLAC0oo2cko1LSQiuqzkkGUIqCCf5xSa5i3AOwUmuTkdXGpdBMmNeYsEqh7_Iphq7J3ZiCD1VwbR66hG0bGuwqvCYX3rURb06-IG-bx_f1c7F9fXpZP2yLoTS-kM6ZnRdMO11KQSvw3oFTQHeSc8MYmLpGjhpNBVAjaOmFFAa5qYWQii_I3TF1GPuvCWOy-34au7nQMjXLUKHkTN0fqViF5A7b7TCGTzf-WAr2cIeV9nTHf_B3P_6Bdqg9_wUIvF9J</recordid><startdate>20220519</startdate><enddate>20220519</enddate><creator>Kshirsagar, Pravin R.</creator><creator>Dadheech, Pankaj</creator><creator>Yuvaraj, T.</creator><creator>Moorthy, C. A. Sathiya</creator><creator>Upadhyaya, Makarand</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220519</creationdate><title>Fatigue detection using artificial intelligence</title><author>Kshirsagar, Pravin R. ; Dadheech, Pankaj ; Yuvaraj, T. ; Moorthy, C. A. Sathiya ; Upadhyaya, Makarand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98f-5aa8bf427a79541c0ffa0a601b53382208dde3e7e8c00de075f4548e38d44563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Augmented reality</topic><topic>Collisions</topic><topic>Driver fatigue</topic><topic>Face recognition</topic><topic>Sleepiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kshirsagar, Pravin R.</creatorcontrib><creatorcontrib>Dadheech, Pankaj</creatorcontrib><creatorcontrib>Yuvaraj, T.</creatorcontrib><creatorcontrib>Moorthy, C. A. Sathiya</creatorcontrib><creatorcontrib>Upadhyaya, Makarand</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kshirsagar, Pravin R.</au><au>Dadheech, Pankaj</au><au>Yuvaraj, T.</au><au>Moorthy, C. A. Sathiya</au><au>Upadhyaya, Makarand</au><au>Ghadai, Ranjan</au><au>Kalita, Kanak</au><au>Ramachandran, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fatigue detection using artificial intelligence</atitle><btitle>AIP conference proceedings</btitle><date>2022-05-19</date><risdate>2022</risdate><volume>2393</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Over the years the development of computer technology has benefited drivers, often in the form of smart systems. In a significant number of car collisions, tiredness is a major factor. Road collisions are the world's most frequent types of injuries and fatalities, and the main causes are typically drunken, sleepy, and rudely behavioral. The main purpose of this article is to define common sources of knowledge for the detection of drowsiness to evaluate when a specified degree of drowsiness is achieved. Fatigue was one of the key techniques for detecting or tracking augmented reality. In particular, driver drowsiness identification can protect riders from drowsy riding collisions. This technology relies on face detection to warn the driver of somnolence or to avoid accidents in traffic.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0074121</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022, Vol.2393 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2666681465 |
source | AIP Journals Complete |
subjects | Artificial intelligence Augmented reality Collisions Driver fatigue Face recognition Sleepiness |
title | Fatigue detection using artificial intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fatigue%20detection%20using%20artificial%20intelligence&rft.btitle=AIP%20conference%20proceedings&rft.au=Kshirsagar,%20Pravin%20R.&rft.date=2022-05-19&rft.volume=2393&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0074121&rft_dat=%3Cproquest_scita%3E2666681465%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666681465&rft_id=info:pmid/&rfr_iscdi=true |