Low-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectors

The integration of triplet–triplet annihilation (TTA) components as electrically and optically active elements in vertically-configured photoactive device architectures is a challenging task to achieve. Herein we present a simple methodology for incorporating a photon absorbing layer of the (2,3,7,8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2022-05, Vol.10 (19), p.7575-7585
Hauptverfasser: Antoniou, Giannis, Yuan, Peisen, Koutsokeras, Loukas, Athanasopoulos, Stavros, Fazzi, Daniele, Panidi, Julianna, Georgiadou, Dimitra G., Prodromakis, Themis, Keivanidis, Panagiotis E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7585
container_issue 19
container_start_page 7575
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 10
creator Antoniou, Giannis
Yuan, Peisen
Koutsokeras, Loukas
Athanasopoulos, Stavros
Fazzi, Daniele
Panidi, Julianna
Georgiadou, Dimitra G.
Prodromakis, Themis
Keivanidis, Panagiotis E.
description The integration of triplet–triplet annihilation (TTA) components as electrically and optically active elements in vertically-configured photoactive device architectures is a challenging task to achieve. Herein we present a simple methodology for incorporating a photon absorbing layer of the (2,3,7,8,12,13,17,18-octaethyl-porphyrinato)platinum( ii ) (PtOEP) metallorganic complex, as a self-TTA annihilator medium in a sandwich-like photodiode device structure. At low power illumination, the PtOEP photodiode exhibits photocurrent generation via the fusion of optically induced PtOEP excited states and it develops an open-circuit voltage ( V OC ) as high as 1.15 V. The structural and spectroscopic characterization of the nanostructured PtOEP photoactive layer in combination with electronic structure calculations identify PtOEP dimer species as the annihilating excited state responsible for the formation of charges. The participation of the fusion process in the mechanism of charge photogeneration manifests in the supralinear dependence of the short-circuit current density ( J SC ) on the incoming photoexcitation intensity, both when incoherent and coherent light are used for illuminating the PtOEP diodes. The photoresponse of the PtOEP device allows for highly selective and sensitive photodetection within the 500–560 nm narrow spectral range. At short-circuit conditions a power-law is observed in the dependence of the device responsivity on fluence. The observed response of the PtOEP photodiodes reveals a hitherto neglected mechanism of photocurrent generation in single-component organic electronic devices that is facilitated by TTA reactions. These findings pave the way towards the fabrication of next-generation electro-optical switches, ultrasensitive organic photodetectors, and TTA-sensitized solar cells with vertically-configured device structure.
doi_str_mv 10.1039/D2TC00662F
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666583577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666583577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a9caefc86ae27d0094fe5d5b3876f1dbe56e259d3805d447fe7548d1e3e56bb03</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWGov_oKAN2E1m2yyu0epVoWCl3pesslsTWmTdZK1evOnu6Wic5mB98178Ai5zNlNzkR9e89Xc8aU4osTMuFMsqyUojj9u7k6J7MYN2ycKleVqifkexn2WR_2gDQOPeqt86CR9m8hBTMggk90DR5QJxc8_XCawqdxCSyNSSeg3RAPgvM0Or_eQmbCrg_-8Oe1DzHhYNKAIx9wrb0zR28LCUwKGC_IWae3EWa_e0peFw-r-VO2fHl8nt8tM8NrmTJdGw2dqZQGXlrG6qIDaWUrqlJ1uW1BKuCytqJi0hZF2UEpi8rmIEalbZmYkqujb4_hfYCYmk0Y0I-RDVdKyUrIshyp6yNlMMSI0DU9up3GryZnzaHk5r9k8QPczXMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666583577</pqid></control><display><type>article</type><title>Low-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Antoniou, Giannis ; Yuan, Peisen ; Koutsokeras, Loukas ; Athanasopoulos, Stavros ; Fazzi, Daniele ; Panidi, Julianna ; Georgiadou, Dimitra G. ; Prodromakis, Themis ; Keivanidis, Panagiotis E.</creator><creatorcontrib>Antoniou, Giannis ; Yuan, Peisen ; Koutsokeras, Loukas ; Athanasopoulos, Stavros ; Fazzi, Daniele ; Panidi, Julianna ; Georgiadou, Dimitra G. ; Prodromakis, Themis ; Keivanidis, Panagiotis E.</creatorcontrib><description>The integration of triplet–triplet annihilation (TTA) components as electrically and optically active elements in vertically-configured photoactive device architectures is a challenging task to achieve. Herein we present a simple methodology for incorporating a photon absorbing layer of the (2,3,7,8,12,13,17,18-octaethyl-porphyrinato)platinum( ii ) (PtOEP) metallorganic complex, as a self-TTA annihilator medium in a sandwich-like photodiode device structure. At low power illumination, the PtOEP photodiode exhibits photocurrent generation via the fusion of optically induced PtOEP excited states and it develops an open-circuit voltage ( V OC ) as high as 1.15 V. The structural and spectroscopic characterization of the nanostructured PtOEP photoactive layer in combination with electronic structure calculations identify PtOEP dimer species as the annihilating excited state responsible for the formation of charges. The participation of the fusion process in the mechanism of charge photogeneration manifests in the supralinear dependence of the short-circuit current density ( J SC ) on the incoming photoexcitation intensity, both when incoherent and coherent light are used for illuminating the PtOEP diodes. The photoresponse of the PtOEP device allows for highly selective and sensitive photodetection within the 500–560 nm narrow spectral range. At short-circuit conditions a power-law is observed in the dependence of the device responsivity on fluence. The observed response of the PtOEP photodiodes reveals a hitherto neglected mechanism of photocurrent generation in single-component organic electronic devices that is facilitated by TTA reactions. These findings pave the way towards the fabrication of next-generation electro-optical switches, ultrasensitive organic photodetectors, and TTA-sensitized solar cells with vertically-configured device structure.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/D2TC00662F</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Circuits ; Coherent light ; Computer architecture ; Electronic devices ; Electronic structure ; Excitation ; Fluence ; Luminous intensity ; Molecular structure ; Nanostructure ; Open circuit voltage ; Optical activity ; Optical switching ; Photodiodes ; Photoelectric effect ; Photoelectric emission ; Photoexcitation ; Photometers ; Photovoltaic cells ; Power management ; Short circuit currents ; Solar cells ; Structural analysis ; Switches</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-05, Vol.10 (19), p.7575-7585</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a9caefc86ae27d0094fe5d5b3876f1dbe56e259d3805d447fe7548d1e3e56bb03</citedby><cites>FETCH-LOGICAL-c295t-a9caefc86ae27d0094fe5d5b3876f1dbe56e259d3805d447fe7548d1e3e56bb03</cites><orcidid>0000-0002-5336-249X ; 0000-0003-0753-2643 ; 0000-0003-3701-1857 ; 0000-0002-2620-3346 ; 0000-0002-2162-3667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Antoniou, Giannis</creatorcontrib><creatorcontrib>Yuan, Peisen</creatorcontrib><creatorcontrib>Koutsokeras, Loukas</creatorcontrib><creatorcontrib>Athanasopoulos, Stavros</creatorcontrib><creatorcontrib>Fazzi, Daniele</creatorcontrib><creatorcontrib>Panidi, Julianna</creatorcontrib><creatorcontrib>Georgiadou, Dimitra G.</creatorcontrib><creatorcontrib>Prodromakis, Themis</creatorcontrib><creatorcontrib>Keivanidis, Panagiotis E.</creatorcontrib><title>Low-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectors</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>The integration of triplet–triplet annihilation (TTA) components as electrically and optically active elements in vertically-configured photoactive device architectures is a challenging task to achieve. Herein we present a simple methodology for incorporating a photon absorbing layer of the (2,3,7,8,12,13,17,18-octaethyl-porphyrinato)platinum( ii ) (PtOEP) metallorganic complex, as a self-TTA annihilator medium in a sandwich-like photodiode device structure. At low power illumination, the PtOEP photodiode exhibits photocurrent generation via the fusion of optically induced PtOEP excited states and it develops an open-circuit voltage ( V OC ) as high as 1.15 V. The structural and spectroscopic characterization of the nanostructured PtOEP photoactive layer in combination with electronic structure calculations identify PtOEP dimer species as the annihilating excited state responsible for the formation of charges. The participation of the fusion process in the mechanism of charge photogeneration manifests in the supralinear dependence of the short-circuit current density ( J SC ) on the incoming photoexcitation intensity, both when incoherent and coherent light are used for illuminating the PtOEP diodes. The photoresponse of the PtOEP device allows for highly selective and sensitive photodetection within the 500–560 nm narrow spectral range. At short-circuit conditions a power-law is observed in the dependence of the device responsivity on fluence. The observed response of the PtOEP photodiodes reveals a hitherto neglected mechanism of photocurrent generation in single-component organic electronic devices that is facilitated by TTA reactions. These findings pave the way towards the fabrication of next-generation electro-optical switches, ultrasensitive organic photodetectors, and TTA-sensitized solar cells with vertically-configured device structure.</description><subject>Circuits</subject><subject>Coherent light</subject><subject>Computer architecture</subject><subject>Electronic devices</subject><subject>Electronic structure</subject><subject>Excitation</subject><subject>Fluence</subject><subject>Luminous intensity</subject><subject>Molecular structure</subject><subject>Nanostructure</subject><subject>Open circuit voltage</subject><subject>Optical activity</subject><subject>Optical switching</subject><subject>Photodiodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoexcitation</subject><subject>Photometers</subject><subject>Photovoltaic cells</subject><subject>Power management</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><subject>Structural analysis</subject><subject>Switches</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWGov_oKAN2E1m2yyu0epVoWCl3pesslsTWmTdZK1evOnu6Wic5mB98178Ai5zNlNzkR9e89Xc8aU4osTMuFMsqyUojj9u7k6J7MYN2ycKleVqifkexn2WR_2gDQOPeqt86CR9m8hBTMggk90DR5QJxc8_XCawqdxCSyNSSeg3RAPgvM0Or_eQmbCrg_-8Oe1DzHhYNKAIx9wrb0zR28LCUwKGC_IWae3EWa_e0peFw-r-VO2fHl8nt8tM8NrmTJdGw2dqZQGXlrG6qIDaWUrqlJ1uW1BKuCytqJi0hZF2UEpi8rmIEalbZmYkqujb4_hfYCYmk0Y0I-RDVdKyUrIshyp6yNlMMSI0DU9up3GryZnzaHk5r9k8QPczXMg</recordid><startdate>20220519</startdate><enddate>20220519</enddate><creator>Antoniou, Giannis</creator><creator>Yuan, Peisen</creator><creator>Koutsokeras, Loukas</creator><creator>Athanasopoulos, Stavros</creator><creator>Fazzi, Daniele</creator><creator>Panidi, Julianna</creator><creator>Georgiadou, Dimitra G.</creator><creator>Prodromakis, Themis</creator><creator>Keivanidis, Panagiotis E.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5336-249X</orcidid><orcidid>https://orcid.org/0000-0003-0753-2643</orcidid><orcidid>https://orcid.org/0000-0003-3701-1857</orcidid><orcidid>https://orcid.org/0000-0002-2620-3346</orcidid><orcidid>https://orcid.org/0000-0002-2162-3667</orcidid></search><sort><creationdate>20220519</creationdate><title>Low-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectors</title><author>Antoniou, Giannis ; Yuan, Peisen ; Koutsokeras, Loukas ; Athanasopoulos, Stavros ; Fazzi, Daniele ; Panidi, Julianna ; Georgiadou, Dimitra G. ; Prodromakis, Themis ; Keivanidis, Panagiotis E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a9caefc86ae27d0094fe5d5b3876f1dbe56e259d3805d447fe7548d1e3e56bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Coherent light</topic><topic>Computer architecture</topic><topic>Electronic devices</topic><topic>Electronic structure</topic><topic>Excitation</topic><topic>Fluence</topic><topic>Luminous intensity</topic><topic>Molecular structure</topic><topic>Nanostructure</topic><topic>Open circuit voltage</topic><topic>Optical activity</topic><topic>Optical switching</topic><topic>Photodiodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoexcitation</topic><topic>Photometers</topic><topic>Photovoltaic cells</topic><topic>Power management</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><topic>Structural analysis</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antoniou, Giannis</creatorcontrib><creatorcontrib>Yuan, Peisen</creatorcontrib><creatorcontrib>Koutsokeras, Loukas</creatorcontrib><creatorcontrib>Athanasopoulos, Stavros</creatorcontrib><creatorcontrib>Fazzi, Daniele</creatorcontrib><creatorcontrib>Panidi, Julianna</creatorcontrib><creatorcontrib>Georgiadou, Dimitra G.</creatorcontrib><creatorcontrib>Prodromakis, Themis</creatorcontrib><creatorcontrib>Keivanidis, Panagiotis E.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antoniou, Giannis</au><au>Yuan, Peisen</au><au>Koutsokeras, Loukas</au><au>Athanasopoulos, Stavros</au><au>Fazzi, Daniele</au><au>Panidi, Julianna</au><au>Georgiadou, Dimitra G.</au><au>Prodromakis, Themis</au><au>Keivanidis, Panagiotis E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectors</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2022-05-19</date><risdate>2022</risdate><volume>10</volume><issue>19</issue><spage>7575</spage><epage>7585</epage><pages>7575-7585</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>The integration of triplet–triplet annihilation (TTA) components as electrically and optically active elements in vertically-configured photoactive device architectures is a challenging task to achieve. Herein we present a simple methodology for incorporating a photon absorbing layer of the (2,3,7,8,12,13,17,18-octaethyl-porphyrinato)platinum( ii ) (PtOEP) metallorganic complex, as a self-TTA annihilator medium in a sandwich-like photodiode device structure. At low power illumination, the PtOEP photodiode exhibits photocurrent generation via the fusion of optically induced PtOEP excited states and it develops an open-circuit voltage ( V OC ) as high as 1.15 V. The structural and spectroscopic characterization of the nanostructured PtOEP photoactive layer in combination with electronic structure calculations identify PtOEP dimer species as the annihilating excited state responsible for the formation of charges. The participation of the fusion process in the mechanism of charge photogeneration manifests in the supralinear dependence of the short-circuit current density ( J SC ) on the incoming photoexcitation intensity, both when incoherent and coherent light are used for illuminating the PtOEP diodes. The photoresponse of the PtOEP device allows for highly selective and sensitive photodetection within the 500–560 nm narrow spectral range. At short-circuit conditions a power-law is observed in the dependence of the device responsivity on fluence. The observed response of the PtOEP photodiodes reveals a hitherto neglected mechanism of photocurrent generation in single-component organic electronic devices that is facilitated by TTA reactions. These findings pave the way towards the fabrication of next-generation electro-optical switches, ultrasensitive organic photodetectors, and TTA-sensitized solar cells with vertically-configured device structure.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2TC00662F</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5336-249X</orcidid><orcidid>https://orcid.org/0000-0003-0753-2643</orcidid><orcidid>https://orcid.org/0000-0003-3701-1857</orcidid><orcidid>https://orcid.org/0000-0002-2620-3346</orcidid><orcidid>https://orcid.org/0000-0002-2162-3667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-05, Vol.10 (19), p.7575-7585
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2666583577
source Royal Society Of Chemistry Journals 2008-
subjects Circuits
Coherent light
Computer architecture
Electronic devices
Electronic structure
Excitation
Fluence
Luminous intensity
Molecular structure
Nanostructure
Open circuit voltage
Optical activity
Optical switching
Photodiodes
Photoelectric effect
Photoelectric emission
Photoexcitation
Photometers
Photovoltaic cells
Power management
Short circuit currents
Solar cells
Structural analysis
Switches
title Low-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-power%20supralinear%20photocurrent%20generation%20via%20excited%20state%20fusion%20in%20single-component%20nanostructured%20organic%20photodetectors&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Antoniou,%20Giannis&rft.date=2022-05-19&rft.volume=10&rft.issue=19&rft.spage=7575&rft.epage=7585&rft.pages=7575-7585&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/D2TC00662F&rft_dat=%3Cproquest_cross%3E2666583577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666583577&rft_id=info:pmid/&rfr_iscdi=true