Electrostatic Discharge Sensing of Concentric Circles of Poly2 with Different Potentials and Discrete High-voltage P-well Modulation on Circular Ultrahigh-voltage N-channel Laterally Diffused MOSFET Devices

In this paper, we present N-channel laterally diffused MOSFET (nLDMOS) devices for electrostatic discharge (ESD) contact-mode sensors in ultrahigh voltage (UHV) applications. These circular UHV nLDMOS devices have concentric circles of poly-layer 2 (Poly2) with different potential configurations and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and materials 2022-05, Vol.34 (5), p.1823
Hauptverfasser: Liu, Zhi-Wei, Chen, Shen-Li, Lai, Jhong-Yi, Chen, Hung-Wei, Chen, Hsun-Hsiang, Lee, Yi-Mu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1823
container_title Sensors and materials
container_volume 34
creator Liu, Zhi-Wei
Chen, Shen-Li
Lai, Jhong-Yi
Chen, Hung-Wei
Chen, Hsun-Hsiang
Lee, Yi-Mu
description In this paper, we present N-channel laterally diffused MOSFET (nLDMOS) devices for electrostatic discharge (ESD) contact-mode sensors in ultrahigh voltage (UHV) applications. These circular UHV nLDMOS devices have concentric circles of poly-layer 2 (Poly2) with different potential configurations and a discrete high-voltage P-well (HVPW) in the drift region. The Poly2 on the drift region is made of polysilicon to reduce the peak electric field in the drift region, thereby reducing the on-resistance. When the Poly2 was connected to the positive VDD potential, the trigger voltage of the device decreased due to the change in the interface electric field in the drift region; thus, this device more easily triggered conduction than the Poly2 grounded type. We used five radial methods to insert the HVPW into the drift region and evenly distributed it into two, four, eight, 16, and 32 equal partitions. When the Poly2 was grounded and the HVPW layer of the drift region was divided into 32 partitions, it had the highest secondary breakdown current of 3.56 A. This is because the more uniform the distribution of the superjunction (SJ), the higher the ability of the component to discharge the ESD current. Therefore, changing the potential of Poly2 changes the electric field distribution and affects the trigger voltage. Adding an HVPW SJ structure in the drift region will increase the on-resistance, thus improving the discharging current capability.
doi_str_mv 10.18494/SAM3764
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666554240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666554240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2314-3fbe7eaa64d2c8cd99700d189bc42dd15b77cb552b38a5175b394e92936db4833</originalsourceid><addsrcrecordid>eNpNUU1LJDEQDaKwgwr7EwJevLSbzld3jjK6qzCjwui5SSfVM5GYuElGmT-5v2nj6EEoKOrVq_eKKoR-tuSi7bniv1aXS9ZJfoBmlDPRkF6qQzQjquUNV0z8QKc5PxNC2l4QSeUM_bv2YEqKuejiDL5y2Wx0WgNeQcgurHGc8DwGA6Gk2p-7ZDzkD_Qh-h3F765s6tQ0QaqUCpaanPYZ62D3cgkK4Bu33jRv0RddpR-ad_AeL6Pd-uoaA67xoVzLhJ98SXrznX_X1J1CAI8XukDS3u_2ltsMFi_vV7-vH_EVvDkD-QQdTdUcTr_yMXqq3flNs7j_czu_XDSGsnoLNo3QgdaSW2p6Y5XqCLFtr0bDqbWtGLvOjELQkfVatJ0YmeKgqGLSjrxn7Bidfeq-pvh3C7kMz3GbQrUcqJRSCE45qazzT5apB84JpuE1uReddkNLhv3Dhq-Hsf87Y4ro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666554240</pqid></control><display><type>article</type><title>Electrostatic Discharge Sensing of Concentric Circles of Poly2 with Different Potentials and Discrete High-voltage P-well Modulation on Circular Ultrahigh-voltage N-channel Laterally Diffused MOSFET Devices</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Zhi-Wei ; Chen, Shen-Li ; Lai, Jhong-Yi ; Chen, Hung-Wei ; Chen, Hsun-Hsiang ; Lee, Yi-Mu</creator><creatorcontrib>Liu, Zhi-Wei ; Chen, Shen-Li ; Lai, Jhong-Yi ; Chen, Hung-Wei ; Chen, Hsun-Hsiang ; Lee, Yi-Mu</creatorcontrib><description>In this paper, we present N-channel laterally diffused MOSFET (nLDMOS) devices for electrostatic discharge (ESD) contact-mode sensors in ultrahigh voltage (UHV) applications. These circular UHV nLDMOS devices have concentric circles of poly-layer 2 (Poly2) with different potential configurations and a discrete high-voltage P-well (HVPW) in the drift region. The Poly2 on the drift region is made of polysilicon to reduce the peak electric field in the drift region, thereby reducing the on-resistance. When the Poly2 was connected to the positive VDD potential, the trigger voltage of the device decreased due to the change in the interface electric field in the drift region; thus, this device more easily triggered conduction than the Poly2 grounded type. We used five radial methods to insert the HVPW into the drift region and evenly distributed it into two, four, eight, 16, and 32 equal partitions. When the Poly2 was grounded and the HVPW layer of the drift region was divided into 32 partitions, it had the highest secondary breakdown current of 3.56 A. This is because the more uniform the distribution of the superjunction (SJ), the higher the ability of the component to discharge the ESD current. Therefore, changing the potential of Poly2 changes the electric field distribution and affects the trigger voltage. Adding an HVPW SJ structure in the drift region will increase the on-resistance, thus improving the discharging current capability.</description><identifier>ISSN: 0914-4935</identifier><identifier>EISSN: 2435-0869</identifier><identifier>DOI: 10.18494/SAM3764</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Drift ; Electric contacts ; Electric fields ; Electrostatic discharges ; High voltages ; MOSFETs ; Polysilicon ; Static electricity</subject><ispartof>Sensors and materials, 2022-05, Vol.34 (5), p.1823</ispartof><rights>Copyright MYU Scientific Publishing Division 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Zhi-Wei</creatorcontrib><creatorcontrib>Chen, Shen-Li</creatorcontrib><creatorcontrib>Lai, Jhong-Yi</creatorcontrib><creatorcontrib>Chen, Hung-Wei</creatorcontrib><creatorcontrib>Chen, Hsun-Hsiang</creatorcontrib><creatorcontrib>Lee, Yi-Mu</creatorcontrib><title>Electrostatic Discharge Sensing of Concentric Circles of Poly2 with Different Potentials and Discrete High-voltage P-well Modulation on Circular Ultrahigh-voltage N-channel Laterally Diffused MOSFET Devices</title><title>Sensors and materials</title><description>In this paper, we present N-channel laterally diffused MOSFET (nLDMOS) devices for electrostatic discharge (ESD) contact-mode sensors in ultrahigh voltage (UHV) applications. These circular UHV nLDMOS devices have concentric circles of poly-layer 2 (Poly2) with different potential configurations and a discrete high-voltage P-well (HVPW) in the drift region. The Poly2 on the drift region is made of polysilicon to reduce the peak electric field in the drift region, thereby reducing the on-resistance. When the Poly2 was connected to the positive VDD potential, the trigger voltage of the device decreased due to the change in the interface electric field in the drift region; thus, this device more easily triggered conduction than the Poly2 grounded type. We used five radial methods to insert the HVPW into the drift region and evenly distributed it into two, four, eight, 16, and 32 equal partitions. When the Poly2 was grounded and the HVPW layer of the drift region was divided into 32 partitions, it had the highest secondary breakdown current of 3.56 A. This is because the more uniform the distribution of the superjunction (SJ), the higher the ability of the component to discharge the ESD current. Therefore, changing the potential of Poly2 changes the electric field distribution and affects the trigger voltage. Adding an HVPW SJ structure in the drift region will increase the on-resistance, thus improving the discharging current capability.</description><subject>Drift</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrostatic discharges</subject><subject>High voltages</subject><subject>MOSFETs</subject><subject>Polysilicon</subject><subject>Static electricity</subject><issn>0914-4935</issn><issn>2435-0869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUU1LJDEQDaKwgwr7EwJevLSbzld3jjK6qzCjwui5SSfVM5GYuElGmT-5v2nj6EEoKOrVq_eKKoR-tuSi7bniv1aXS9ZJfoBmlDPRkF6qQzQjquUNV0z8QKc5PxNC2l4QSeUM_bv2YEqKuejiDL5y2Wx0WgNeQcgurHGc8DwGA6Gk2p-7ZDzkD_Qh-h3F765s6tQ0QaqUCpaanPYZ62D3cgkK4Bu33jRv0RddpR-ad_AeL6Pd-uoaA67xoVzLhJ98SXrznX_X1J1CAI8XukDS3u_2ltsMFi_vV7-vH_EVvDkD-QQdTdUcTr_yMXqq3flNs7j_czu_XDSGsnoLNo3QgdaSW2p6Y5XqCLFtr0bDqbWtGLvOjELQkfVatJ0YmeKgqGLSjrxn7Bidfeq-pvh3C7kMz3GbQrUcqJRSCE45qazzT5apB84JpuE1uReddkNLhv3Dhq-Hsf87Y4ro</recordid><startdate>20220517</startdate><enddate>20220517</enddate><creator>Liu, Zhi-Wei</creator><creator>Chen, Shen-Li</creator><creator>Lai, Jhong-Yi</creator><creator>Chen, Hung-Wei</creator><creator>Chen, Hsun-Hsiang</creator><creator>Lee, Yi-Mu</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220517</creationdate><title>Electrostatic Discharge Sensing of Concentric Circles of Poly2 with Different Potentials and Discrete High-voltage P-well Modulation on Circular Ultrahigh-voltage N-channel Laterally Diffused MOSFET Devices</title><author>Liu, Zhi-Wei ; Chen, Shen-Li ; Lai, Jhong-Yi ; Chen, Hung-Wei ; Chen, Hsun-Hsiang ; Lee, Yi-Mu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2314-3fbe7eaa64d2c8cd99700d189bc42dd15b77cb552b38a5175b394e92936db4833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Drift</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrostatic discharges</topic><topic>High voltages</topic><topic>MOSFETs</topic><topic>Polysilicon</topic><topic>Static electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhi-Wei</creatorcontrib><creatorcontrib>Chen, Shen-Li</creatorcontrib><creatorcontrib>Lai, Jhong-Yi</creatorcontrib><creatorcontrib>Chen, Hung-Wei</creatorcontrib><creatorcontrib>Chen, Hsun-Hsiang</creatorcontrib><creatorcontrib>Lee, Yi-Mu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhi-Wei</au><au>Chen, Shen-Li</au><au>Lai, Jhong-Yi</au><au>Chen, Hung-Wei</au><au>Chen, Hsun-Hsiang</au><au>Lee, Yi-Mu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Discharge Sensing of Concentric Circles of Poly2 with Different Potentials and Discrete High-voltage P-well Modulation on Circular Ultrahigh-voltage N-channel Laterally Diffused MOSFET Devices</atitle><jtitle>Sensors and materials</jtitle><date>2022-05-17</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><spage>1823</spage><pages>1823-</pages><issn>0914-4935</issn><eissn>2435-0869</eissn><abstract>In this paper, we present N-channel laterally diffused MOSFET (nLDMOS) devices for electrostatic discharge (ESD) contact-mode sensors in ultrahigh voltage (UHV) applications. These circular UHV nLDMOS devices have concentric circles of poly-layer 2 (Poly2) with different potential configurations and a discrete high-voltage P-well (HVPW) in the drift region. The Poly2 on the drift region is made of polysilicon to reduce the peak electric field in the drift region, thereby reducing the on-resistance. When the Poly2 was connected to the positive VDD potential, the trigger voltage of the device decreased due to the change in the interface electric field in the drift region; thus, this device more easily triggered conduction than the Poly2 grounded type. We used five radial methods to insert the HVPW into the drift region and evenly distributed it into two, four, eight, 16, and 32 equal partitions. When the Poly2 was grounded and the HVPW layer of the drift region was divided into 32 partitions, it had the highest secondary breakdown current of 3.56 A. This is because the more uniform the distribution of the superjunction (SJ), the higher the ability of the component to discharge the ESD current. Therefore, changing the potential of Poly2 changes the electric field distribution and affects the trigger voltage. Adding an HVPW SJ structure in the drift region will increase the on-resistance, thus improving the discharging current capability.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM3764</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-4935
ispartof Sensors and materials, 2022-05, Vol.34 (5), p.1823
issn 0914-4935
2435-0869
language eng
recordid cdi_proquest_journals_2666554240
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Drift
Electric contacts
Electric fields
Electrostatic discharges
High voltages
MOSFETs
Polysilicon
Static electricity
title Electrostatic Discharge Sensing of Concentric Circles of Poly2 with Different Potentials and Discrete High-voltage P-well Modulation on Circular Ultrahigh-voltage N-channel Laterally Diffused MOSFET Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Discharge%20Sensing%20of%20Concentric%20Circles%20of%20Poly2%20with%20Different%20Potentials%20and%20Discrete%20High-voltage%20P-well%20Modulation%20on%20Circular%20Ultrahigh-voltage%20N-channel%20Laterally%20Diffused%20MOSFET%20Devices&rft.jtitle=Sensors%20and%20materials&rft.au=Liu,%20Zhi-Wei&rft.date=2022-05-17&rft.volume=34&rft.issue=5&rft.spage=1823&rft.pages=1823-&rft.issn=0914-4935&rft.eissn=2435-0869&rft_id=info:doi/10.18494/SAM3764&rft_dat=%3Cproquest_cross%3E2666554240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666554240&rft_id=info:pmid/&rfr_iscdi=true