Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy
C ovalent organic framework(COF) is a porous crystalline material with a well-controlled structure and a wide range of potential applications. However, the construction of new COF faces huge challenges, including the design and synthesis of structural unit monomers, the choice of reaction solvent sy...
Gespeichert in:
Veröffentlicht in: | Chemical research in Chinese universities 2022-04, Vol.38 (2), p.402-408 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 408 |
---|---|
container_issue | 2 |
container_start_page | 402 |
container_title | Chemical research in Chinese universities |
container_volume | 38 |
creator | Cui, Yumeng Miao, Zhuang Liu, Qi Jin, Fenchun Zhai, Yufeng Zhang, Lingyan Wang, Wenli Wang, Ke Liu, Guiyan Zeng, Yongfei |
description | C
ovalent organic framework(COF) is a porous crystalline material with a well-controlled structure and a wide range of potential applications. However, the construction of new COF faces huge challenges, including the design and synthesis of structural unit monomers, the choice of reaction solvent system, and the study of reaction time and temperature. So, it’s particularly important to widen the application scope of synthetic methods and further promote the development of COFs. Here, we performed structural transformations in a three-dimensional(3D) COF(COF-300), and Fourier transform infrared spectroscopy(FTIR), power X-ray diffraction analysis(PXRD) and nitrogen adsorption isotherms confirmed the chemical principles and the successful realization of these exchanges. At the same time, we found that the interpenetrating structure in 3D COF can be changed through the conversion of linkers. The structure simulation successfully proved the transformation of COF from five-fold to seven-fold interpenetration. In addition, in order to prove the versatility of this strategy, we used the same method to convert COF-300 into a high crystallinity 3D COF(TJNU-COF-302) that is also seven-fold interpenetrating and has not been reported. This simple strategy not only makes it easy to obtain a 3D COF connected with imines, which greatly promotes the development of COF, but also provides a new way to develop 3D COFs with complex interpenetrating structures. |
doi_str_mv | 10.1007/s40242-021-1295-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666541479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666541479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7445adac50d357607345f38afb0e6abe7fef30942a635cbb103d9747e0e1e3c03</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz6uz3-YopVWh4MF6XjbJpE0_krqbVttf75YInjwNDM_7MvMQcsvhngPYh6hAKMFAcMZFptnxjAyE4MAkt_ycDBKkWQYKLslVjEsAmRmjBsSN2iZ2YVd0ddvQtqKezhYBkZX1BpuYln5NR-3er7Hp6FuY-6Yu6CT4DX61YUX3tafdAum0blYY6Pi7WPhmjvS9C77D-eGaXFR-HfHmdw7Jx2Q8G72w6dvz6-hpygrJTcesUtqXvtBQSm0NWKl0JR99lQMan6OtsJKQKeGN1EWec5BlZpVFQI6yADkkd33vNrSfO4ydW7a7kI6PThhjtOLKZoniPVWENsaAlduGeuPDwXFwJ4-u9-iSR3fy6I4pI_pMTGx6Lfw1_x_6AS9xdpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666541479</pqid></control><display><type>article</type><title>Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy</title><source>SpringerLink (Online service)</source><creator>Cui, Yumeng ; Miao, Zhuang ; Liu, Qi ; Jin, Fenchun ; Zhai, Yufeng ; Zhang, Lingyan ; Wang, Wenli ; Wang, Ke ; Liu, Guiyan ; Zeng, Yongfei</creator><creatorcontrib>Cui, Yumeng ; Miao, Zhuang ; Liu, Qi ; Jin, Fenchun ; Zhai, Yufeng ; Zhang, Lingyan ; Wang, Wenli ; Wang, Ke ; Liu, Guiyan ; Zeng, Yongfei</creatorcontrib><description>C
ovalent organic framework(COF) is a porous crystalline material with a well-controlled structure and a wide range of potential applications. However, the construction of new COF faces huge challenges, including the design and synthesis of structural unit monomers, the choice of reaction solvent system, and the study of reaction time and temperature. So, it’s particularly important to widen the application scope of synthetic methods and further promote the development of COFs. Here, we performed structural transformations in a three-dimensional(3D) COF(COF-300), and Fourier transform infrared spectroscopy(FTIR), power X-ray diffraction analysis(PXRD) and nitrogen adsorption isotherms confirmed the chemical principles and the successful realization of these exchanges. At the same time, we found that the interpenetrating structure in 3D COF can be changed through the conversion of linkers. The structure simulation successfully proved the transformation of COF from five-fold to seven-fold interpenetration. In addition, in order to prove the versatility of this strategy, we used the same method to convert COF-300 into a high crystallinity 3D COF(TJNU-COF-302) that is also seven-fold interpenetrating and has not been reported. This simple strategy not only makes it easy to obtain a 3D COF connected with imines, which greatly promotes the development of COF, but also provides a new way to develop 3D COFs with complex interpenetrating structures.</description><identifier>ISSN: 1005-9040</identifier><identifier>EISSN: 2210-3171</identifier><identifier>DOI: 10.1007/s40242-021-1295-z</identifier><language>eng</language><publisher>Changchun: Jilin University and The Editorial Department of Chemical Research in Chinese Universities</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Crystal structure ; Crystallinity ; Exchanging ; Fourier transforms ; Imines ; Infrared analysis ; Inorganic Chemistry ; Organic Chemistry ; Physical Chemistry ; Porous materials ; Reaction time ; Review</subject><ispartof>Chemical research in Chinese universities, 2022-04, Vol.38 (2), p.402-408</ispartof><rights>Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2021</rights><rights>Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7445adac50d357607345f38afb0e6abe7fef30942a635cbb103d9747e0e1e3c03</citedby><cites>FETCH-LOGICAL-c316t-7445adac50d357607345f38afb0e6abe7fef30942a635cbb103d9747e0e1e3c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40242-021-1295-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40242-021-1295-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cui, Yumeng</creatorcontrib><creatorcontrib>Miao, Zhuang</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Jin, Fenchun</creatorcontrib><creatorcontrib>Zhai, Yufeng</creatorcontrib><creatorcontrib>Zhang, Lingyan</creatorcontrib><creatorcontrib>Wang, Wenli</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Liu, Guiyan</creatorcontrib><creatorcontrib>Zeng, Yongfei</creatorcontrib><title>Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy</title><title>Chemical research in Chinese universities</title><addtitle>Chem. Res. Chin. Univ</addtitle><description>C
ovalent organic framework(COF) is a porous crystalline material with a well-controlled structure and a wide range of potential applications. However, the construction of new COF faces huge challenges, including the design and synthesis of structural unit monomers, the choice of reaction solvent system, and the study of reaction time and temperature. So, it’s particularly important to widen the application scope of synthetic methods and further promote the development of COFs. Here, we performed structural transformations in a three-dimensional(3D) COF(COF-300), and Fourier transform infrared spectroscopy(FTIR), power X-ray diffraction analysis(PXRD) and nitrogen adsorption isotherms confirmed the chemical principles and the successful realization of these exchanges. At the same time, we found that the interpenetrating structure in 3D COF can be changed through the conversion of linkers. The structure simulation successfully proved the transformation of COF from five-fold to seven-fold interpenetration. In addition, in order to prove the versatility of this strategy, we used the same method to convert COF-300 into a high crystallinity 3D COF(TJNU-COF-302) that is also seven-fold interpenetrating and has not been reported. This simple strategy not only makes it easy to obtain a 3D COF connected with imines, which greatly promotes the development of COF, but also provides a new way to develop 3D COFs with complex interpenetrating structures.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Exchanging</subject><subject>Fourier transforms</subject><subject>Imines</subject><subject>Infrared analysis</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Porous materials</subject><subject>Reaction time</subject><subject>Review</subject><issn>1005-9040</issn><issn>2210-3171</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz6uz3-YopVWh4MF6XjbJpE0_krqbVttf75YInjwNDM_7MvMQcsvhngPYh6hAKMFAcMZFptnxjAyE4MAkt_ycDBKkWQYKLslVjEsAmRmjBsSN2iZ2YVd0ddvQtqKezhYBkZX1BpuYln5NR-3er7Hp6FuY-6Yu6CT4DX61YUX3tafdAum0blYY6Pi7WPhmjvS9C77D-eGaXFR-HfHmdw7Jx2Q8G72w6dvz6-hpygrJTcesUtqXvtBQSm0NWKl0JR99lQMan6OtsJKQKeGN1EWec5BlZpVFQI6yADkkd33vNrSfO4ydW7a7kI6PThhjtOLKZoniPVWENsaAlduGeuPDwXFwJ4-u9-iSR3fy6I4pI_pMTGx6Lfw1_x_6AS9xdpY</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Cui, Yumeng</creator><creator>Miao, Zhuang</creator><creator>Liu, Qi</creator><creator>Jin, Fenchun</creator><creator>Zhai, Yufeng</creator><creator>Zhang, Lingyan</creator><creator>Wang, Wenli</creator><creator>Wang, Ke</creator><creator>Liu, Guiyan</creator><creator>Zeng, Yongfei</creator><general>Jilin University and The Editorial Department of Chemical Research in Chinese Universities</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy</title><author>Cui, Yumeng ; Miao, Zhuang ; Liu, Qi ; Jin, Fenchun ; Zhai, Yufeng ; Zhang, Lingyan ; Wang, Wenli ; Wang, Ke ; Liu, Guiyan ; Zeng, Yongfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7445adac50d357607345f38afb0e6abe7fef30942a635cbb103d9747e0e1e3c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Exchanging</topic><topic>Fourier transforms</topic><topic>Imines</topic><topic>Infrared analysis</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Porous materials</topic><topic>Reaction time</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yumeng</creatorcontrib><creatorcontrib>Miao, Zhuang</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Jin, Fenchun</creatorcontrib><creatorcontrib>Zhai, Yufeng</creatorcontrib><creatorcontrib>Zhang, Lingyan</creatorcontrib><creatorcontrib>Wang, Wenli</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Liu, Guiyan</creatorcontrib><creatorcontrib>Zeng, Yongfei</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical research in Chinese universities</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yumeng</au><au>Miao, Zhuang</au><au>Liu, Qi</au><au>Jin, Fenchun</au><au>Zhai, Yufeng</au><au>Zhang, Lingyan</au><au>Wang, Wenli</au><au>Wang, Ke</au><au>Liu, Guiyan</au><au>Zeng, Yongfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy</atitle><jtitle>Chemical research in Chinese universities</jtitle><stitle>Chem. Res. Chin. Univ</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>402</spage><epage>408</epage><pages>402-408</pages><issn>1005-9040</issn><eissn>2210-3171</eissn><abstract>C
ovalent organic framework(COF) is a porous crystalline material with a well-controlled structure and a wide range of potential applications. However, the construction of new COF faces huge challenges, including the design and synthesis of structural unit monomers, the choice of reaction solvent system, and the study of reaction time and temperature. So, it’s particularly important to widen the application scope of synthetic methods and further promote the development of COFs. Here, we performed structural transformations in a three-dimensional(3D) COF(COF-300), and Fourier transform infrared spectroscopy(FTIR), power X-ray diffraction analysis(PXRD) and nitrogen adsorption isotherms confirmed the chemical principles and the successful realization of these exchanges. At the same time, we found that the interpenetrating structure in 3D COF can be changed through the conversion of linkers. The structure simulation successfully proved the transformation of COF from five-fold to seven-fold interpenetration. In addition, in order to prove the versatility of this strategy, we used the same method to convert COF-300 into a high crystallinity 3D COF(TJNU-COF-302) that is also seven-fold interpenetrating and has not been reported. This simple strategy not only makes it easy to obtain a 3D COF connected with imines, which greatly promotes the development of COF, but also provides a new way to develop 3D COFs with complex interpenetrating structures.</abstract><cop>Changchun</cop><pub>Jilin University and The Editorial Department of Chemical Research in Chinese Universities</pub><doi>10.1007/s40242-021-1295-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-9040 |
ispartof | Chemical research in Chinese universities, 2022-04, Vol.38 (2), p.402-408 |
issn | 1005-9040 2210-3171 |
language | eng |
recordid | cdi_proquest_journals_2666541479 |
source | SpringerLink (Online service) |
subjects | Analytical Chemistry Chemistry Chemistry and Materials Science Chemistry/Food Science Crystal structure Crystallinity Exchanging Fourier transforms Imines Infrared analysis Inorganic Chemistry Organic Chemistry Physical Chemistry Porous materials Reaction time Review |
title | Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20Three-dimensional%20Covalent%20Organic%20Framework%20via%20the%20Linker%20Exchange%20Strategy&rft.jtitle=Chemical%20research%20in%20Chinese%20universities&rft.au=Cui,%20Yumeng&rft.date=2022-04-01&rft.volume=38&rft.issue=2&rft.spage=402&rft.epage=408&rft.pages=402-408&rft.issn=1005-9040&rft.eissn=2210-3171&rft_id=info:doi/10.1007/s40242-021-1295-z&rft_dat=%3Cproquest_cross%3E2666541479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666541479&rft_id=info:pmid/&rfr_iscdi=true |