Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties
To address the problems of coarse columnar grains, inhomogeneous microstructure, and anisotropic mechanical properties of Ti-6Al-4V manufactured by wire and arc additive manufacturing (WAAM) and hybrid additive manufacturing with plasma-arc deposition, synchronous microrolling (HDMR) was examined in...
Gespeichert in:
Veröffentlicht in: | Science China. Technological sciences 2022, Vol.65 (4), p.849-857 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 857 |
---|---|
container_issue | 4 |
container_start_page | 849 |
container_title | Science China. Technological sciences |
container_volume | 65 |
creator | Cheng, Kui Zhang, MingBo Song, Hao Liu, XinWang Fan, ZiTian Wang, GuiLan Zhang, HaiOu |
description | To address the problems of coarse columnar grains, inhomogeneous microstructure, and anisotropic mechanical properties of Ti-6Al-4V manufactured by wire and arc additive manufacturing (WAAM) and hybrid additive manufacturing with plasma-arc deposition, synchronous microrolling (HDMR) was examined in this study. HDMR leads to significant grain refinement and isotropy improvement. Unrolled additive manufacturing alloys show typical columnar grains, while the microrolled ones show a transition from columnar to equiaxed grains with the fraction depending on the microrolling force. The microrolling-induced formation of equiaxed grains is caused by both dendrite fragmentation and prior β recrystallization in the subsequent deposition. Interestingly, the rolling force required for good grain refinement in HDMR is much lower than that in WAAM with subsequent cold rolling. Microstructure characteristics are present near the grain boundaries due to the recrystallized α lamellae distribution. The width of the basketweave α lamellae decreases with the increasing microrolling force. The yield strength and ultimate tensile strength of HDMR samples increase with a decrease in elongation anisotropy. This study shows that HDMR can effectively refine grains and improve the tensile properties of titanium alloys, providing a broad prospect for the rapid formation of large titanium alloy parts. |
doi_str_mv | 10.1007/s11431-021-1991-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666539979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666539979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-77cf7c528cd3681d9f3fe0ccd07c4f4f78406c3ed17f200aca02cf0e9302674f3</originalsourceid><addsrcrecordid>eNp1kMtKByEUh4coKKoHaCe0zTqOk47t_kQ3CNpUWzEvZTjjpDPBvEcPnNMErXKjB3-Xw1dVRwROCQA_y4Q0lGCoCSZCEMy3qj3SMlEmgO3yZrzBnNZktzrM-R3Koa0A0uxVXxtj_Og_LepUPzmlxyn5_hVFhx49ZpuAm2ekQogzepnR2_ySvEFDULlTWCWNjB1iLgGxR6o3qPM6xRRDKBkX6CYp36MupuEthvg6n6z_eUzT0mNPfjyj7bMPFg0pDjaN3uaDasepkO3h771fPV1fPV7e4vuHm7vLzT3WlLARc64d1-d1qw1lLTHCUWdBawNcN65xvG2AaWoN4a4GUFpBrR1YQaEuRBzdr47X3FL9Mdk8yvc4pb5Uypoxdk6F4KKoyKpaVs_JOjkk36k0SwJy4S9X_rLwlwt_yYunXj15WHDa9Jf8v-kbMNaKxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666539979</pqid></control><display><type>article</type><title>Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cheng, Kui ; Zhang, MingBo ; Song, Hao ; Liu, XinWang ; Fan, ZiTian ; Wang, GuiLan ; Zhang, HaiOu</creator><creatorcontrib>Cheng, Kui ; Zhang, MingBo ; Song, Hao ; Liu, XinWang ; Fan, ZiTian ; Wang, GuiLan ; Zhang, HaiOu</creatorcontrib><description>To address the problems of coarse columnar grains, inhomogeneous microstructure, and anisotropic mechanical properties of Ti-6Al-4V manufactured by wire and arc additive manufacturing (WAAM) and hybrid additive manufacturing with plasma-arc deposition, synchronous microrolling (HDMR) was examined in this study. HDMR leads to significant grain refinement and isotropy improvement. Unrolled additive manufacturing alloys show typical columnar grains, while the microrolled ones show a transition from columnar to equiaxed grains with the fraction depending on the microrolling force. The microrolling-induced formation of equiaxed grains is caused by both dendrite fragmentation and prior β recrystallization in the subsequent deposition. Interestingly, the rolling force required for good grain refinement in HDMR is much lower than that in WAAM with subsequent cold rolling. Microstructure characteristics are present near the grain boundaries due to the recrystallized α lamellae distribution. The width of the basketweave α lamellae decreases with the increasing microrolling force. The yield strength and ultimate tensile strength of HDMR samples increase with a decrease in elongation anisotropy. This study shows that HDMR can effectively refine grains and improve the tensile properties of titanium alloys, providing a broad prospect for the rapid formation of large titanium alloy parts.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-021-1991-7</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Additive manufacturing ; Anisotropy ; Arc deposition ; Cold rolling ; Dendritic structure ; Elongation ; Engineering ; Grain boundaries ; Grain refinement ; Isotropy ; Manufacturing ; Mechanical properties ; Microstructure ; Recrystallization ; Tensile properties ; Titanium alloys ; Titanium base alloys ; Ultimate tensile strength</subject><ispartof>Science China. Technological sciences, 2022, Vol.65 (4), p.849-857</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-77cf7c528cd3681d9f3fe0ccd07c4f4f78406c3ed17f200aca02cf0e9302674f3</citedby><cites>FETCH-LOGICAL-c316t-77cf7c528cd3681d9f3fe0ccd07c4f4f78406c3ed17f200aca02cf0e9302674f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-021-1991-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-021-1991-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Cheng, Kui</creatorcontrib><creatorcontrib>Zhang, MingBo</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Liu, XinWang</creatorcontrib><creatorcontrib>Fan, ZiTian</creatorcontrib><creatorcontrib>Wang, GuiLan</creatorcontrib><creatorcontrib>Zhang, HaiOu</creatorcontrib><title>Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>To address the problems of coarse columnar grains, inhomogeneous microstructure, and anisotropic mechanical properties of Ti-6Al-4V manufactured by wire and arc additive manufacturing (WAAM) and hybrid additive manufacturing with plasma-arc deposition, synchronous microrolling (HDMR) was examined in this study. HDMR leads to significant grain refinement and isotropy improvement. Unrolled additive manufacturing alloys show typical columnar grains, while the microrolled ones show a transition from columnar to equiaxed grains with the fraction depending on the microrolling force. The microrolling-induced formation of equiaxed grains is caused by both dendrite fragmentation and prior β recrystallization in the subsequent deposition. Interestingly, the rolling force required for good grain refinement in HDMR is much lower than that in WAAM with subsequent cold rolling. Microstructure characteristics are present near the grain boundaries due to the recrystallized α lamellae distribution. The width of the basketweave α lamellae decreases with the increasing microrolling force. The yield strength and ultimate tensile strength of HDMR samples increase with a decrease in elongation anisotropy. This study shows that HDMR can effectively refine grains and improve the tensile properties of titanium alloys, providing a broad prospect for the rapid formation of large titanium alloy parts.</description><subject>Additive manufacturing</subject><subject>Anisotropy</subject><subject>Arc deposition</subject><subject>Cold rolling</subject><subject>Dendritic structure</subject><subject>Elongation</subject><subject>Engineering</subject><subject>Grain boundaries</subject><subject>Grain refinement</subject><subject>Isotropy</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Recrystallization</subject><subject>Tensile properties</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Ultimate tensile strength</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKByEUh4coKKoHaCe0zTqOk47t_kQ3CNpUWzEvZTjjpDPBvEcPnNMErXKjB3-Xw1dVRwROCQA_y4Q0lGCoCSZCEMy3qj3SMlEmgO3yZrzBnNZktzrM-R3Koa0A0uxVXxtj_Og_LepUPzmlxyn5_hVFhx49ZpuAm2ekQogzepnR2_ySvEFDULlTWCWNjB1iLgGxR6o3qPM6xRRDKBkX6CYp36MupuEthvg6n6z_eUzT0mNPfjyj7bMPFg0pDjaN3uaDasepkO3h771fPV1fPV7e4vuHm7vLzT3WlLARc64d1-d1qw1lLTHCUWdBawNcN65xvG2AaWoN4a4GUFpBrR1YQaEuRBzdr47X3FL9Mdk8yvc4pb5Uypoxdk6F4KKoyKpaVs_JOjkk36k0SwJy4S9X_rLwlwt_yYunXj15WHDa9Jf8v-kbMNaKxg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cheng, Kui</creator><creator>Zhang, MingBo</creator><creator>Song, Hao</creator><creator>Liu, XinWang</creator><creator>Fan, ZiTian</creator><creator>Wang, GuiLan</creator><creator>Zhang, HaiOu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties</title><author>Cheng, Kui ; Zhang, MingBo ; Song, Hao ; Liu, XinWang ; Fan, ZiTian ; Wang, GuiLan ; Zhang, HaiOu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-77cf7c528cd3681d9f3fe0ccd07c4f4f78406c3ed17f200aca02cf0e9302674f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Anisotropy</topic><topic>Arc deposition</topic><topic>Cold rolling</topic><topic>Dendritic structure</topic><topic>Elongation</topic><topic>Engineering</topic><topic>Grain boundaries</topic><topic>Grain refinement</topic><topic>Isotropy</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Recrystallization</topic><topic>Tensile properties</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Kui</creatorcontrib><creatorcontrib>Zhang, MingBo</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Liu, XinWang</creatorcontrib><creatorcontrib>Fan, ZiTian</creatorcontrib><creatorcontrib>Wang, GuiLan</creatorcontrib><creatorcontrib>Zhang, HaiOu</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Kui</au><au>Zhang, MingBo</au><au>Song, Hao</au><au>Liu, XinWang</au><au>Fan, ZiTian</au><au>Wang, GuiLan</au><au>Zhang, HaiOu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2022</date><risdate>2022</risdate><volume>65</volume><issue>4</issue><spage>849</spage><epage>857</epage><pages>849-857</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>To address the problems of coarse columnar grains, inhomogeneous microstructure, and anisotropic mechanical properties of Ti-6Al-4V manufactured by wire and arc additive manufacturing (WAAM) and hybrid additive manufacturing with plasma-arc deposition, synchronous microrolling (HDMR) was examined in this study. HDMR leads to significant grain refinement and isotropy improvement. Unrolled additive manufacturing alloys show typical columnar grains, while the microrolled ones show a transition from columnar to equiaxed grains with the fraction depending on the microrolling force. The microrolling-induced formation of equiaxed grains is caused by both dendrite fragmentation and prior β recrystallization in the subsequent deposition. Interestingly, the rolling force required for good grain refinement in HDMR is much lower than that in WAAM with subsequent cold rolling. Microstructure characteristics are present near the grain boundaries due to the recrystallized α lamellae distribution. The width of the basketweave α lamellae decreases with the increasing microrolling force. The yield strength and ultimate tensile strength of HDMR samples increase with a decrease in elongation anisotropy. This study shows that HDMR can effectively refine grains and improve the tensile properties of titanium alloys, providing a broad prospect for the rapid formation of large titanium alloy parts.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-021-1991-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7321 |
ispartof | Science China. Technological sciences, 2022, Vol.65 (4), p.849-857 |
issn | 1674-7321 1869-1900 |
language | eng |
recordid | cdi_proquest_journals_2666539979 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Additive manufacturing Anisotropy Arc deposition Cold rolling Dendritic structure Elongation Engineering Grain boundaries Grain refinement Isotropy Manufacturing Mechanical properties Microstructure Recrystallization Tensile properties Titanium alloys Titanium base alloys Ultimate tensile strength |
title | Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20manufacturing%20of%20Ti-6Al-4V%20alloy%20by%20hybrid%20plasma-arc%20deposition%20and%20microrolling:%20Grain%20morphology,%20microstructure,%20and%20tensile%20properties&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Cheng,%20Kui&rft.date=2022&rft.volume=65&rft.issue=4&rft.spage=849&rft.epage=857&rft.pages=849-857&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-021-1991-7&rft_dat=%3Cproquest_cross%3E2666539979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666539979&rft_id=info:pmid/&rfr_iscdi=true |