Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties

To address the problems of coarse columnar grains, inhomogeneous microstructure, and anisotropic mechanical properties of Ti-6Al-4V manufactured by wire and arc additive manufacturing (WAAM) and hybrid additive manufacturing with plasma-arc deposition, synchronous microrolling (HDMR) was examined in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2022, Vol.65 (4), p.849-857
Hauptverfasser: Cheng, Kui, Zhang, MingBo, Song, Hao, Liu, XinWang, Fan, ZiTian, Wang, GuiLan, Zhang, HaiOu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 857
container_issue 4
container_start_page 849
container_title Science China. Technological sciences
container_volume 65
creator Cheng, Kui
Zhang, MingBo
Song, Hao
Liu, XinWang
Fan, ZiTian
Wang, GuiLan
Zhang, HaiOu
description To address the problems of coarse columnar grains, inhomogeneous microstructure, and anisotropic mechanical properties of Ti-6Al-4V manufactured by wire and arc additive manufacturing (WAAM) and hybrid additive manufacturing with plasma-arc deposition, synchronous microrolling (HDMR) was examined in this study. HDMR leads to significant grain refinement and isotropy improvement. Unrolled additive manufacturing alloys show typical columnar grains, while the microrolled ones show a transition from columnar to equiaxed grains with the fraction depending on the microrolling force. The microrolling-induced formation of equiaxed grains is caused by both dendrite fragmentation and prior β recrystallization in the subsequent deposition. Interestingly, the rolling force required for good grain refinement in HDMR is much lower than that in WAAM with subsequent cold rolling. Microstructure characteristics are present near the grain boundaries due to the recrystallized α lamellae distribution. The width of the basketweave α lamellae decreases with the increasing microrolling force. The yield strength and ultimate tensile strength of HDMR samples increase with a decrease in elongation anisotropy. This study shows that HDMR can effectively refine grains and improve the tensile properties of titanium alloys, providing a broad prospect for the rapid formation of large titanium alloy parts.
doi_str_mv 10.1007/s11431-021-1991-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666539979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666539979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-77cf7c528cd3681d9f3fe0ccd07c4f4f78406c3ed17f200aca02cf0e9302674f3</originalsourceid><addsrcrecordid>eNp1kMtKByEUh4coKKoHaCe0zTqOk47t_kQ3CNpUWzEvZTjjpDPBvEcPnNMErXKjB3-Xw1dVRwROCQA_y4Q0lGCoCSZCEMy3qj3SMlEmgO3yZrzBnNZktzrM-R3Koa0A0uxVXxtj_Og_LepUPzmlxyn5_hVFhx49ZpuAm2ekQogzepnR2_ySvEFDULlTWCWNjB1iLgGxR6o3qPM6xRRDKBkX6CYp36MupuEthvg6n6z_eUzT0mNPfjyj7bMPFg0pDjaN3uaDasepkO3h771fPV1fPV7e4vuHm7vLzT3WlLARc64d1-d1qw1lLTHCUWdBawNcN65xvG2AaWoN4a4GUFpBrR1YQaEuRBzdr47X3FL9Mdk8yvc4pb5Uypoxdk6F4KKoyKpaVs_JOjkk36k0SwJy4S9X_rLwlwt_yYunXj15WHDa9Jf8v-kbMNaKxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666539979</pqid></control><display><type>article</type><title>Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cheng, Kui ; Zhang, MingBo ; Song, Hao ; Liu, XinWang ; Fan, ZiTian ; Wang, GuiLan ; Zhang, HaiOu</creator><creatorcontrib>Cheng, Kui ; Zhang, MingBo ; Song, Hao ; Liu, XinWang ; Fan, ZiTian ; Wang, GuiLan ; Zhang, HaiOu</creatorcontrib><description>To address the problems of coarse columnar grains, inhomogeneous microstructure, and anisotropic mechanical properties of Ti-6Al-4V manufactured by wire and arc additive manufacturing (WAAM) and hybrid additive manufacturing with plasma-arc deposition, synchronous microrolling (HDMR) was examined in this study. HDMR leads to significant grain refinement and isotropy improvement. Unrolled additive manufacturing alloys show typical columnar grains, while the microrolled ones show a transition from columnar to equiaxed grains with the fraction depending on the microrolling force. The microrolling-induced formation of equiaxed grains is caused by both dendrite fragmentation and prior β recrystallization in the subsequent deposition. Interestingly, the rolling force required for good grain refinement in HDMR is much lower than that in WAAM with subsequent cold rolling. Microstructure characteristics are present near the grain boundaries due to the recrystallized α lamellae distribution. The width of the basketweave α lamellae decreases with the increasing microrolling force. The yield strength and ultimate tensile strength of HDMR samples increase with a decrease in elongation anisotropy. This study shows that HDMR can effectively refine grains and improve the tensile properties of titanium alloys, providing a broad prospect for the rapid formation of large titanium alloy parts.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-021-1991-7</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Additive manufacturing ; Anisotropy ; Arc deposition ; Cold rolling ; Dendritic structure ; Elongation ; Engineering ; Grain boundaries ; Grain refinement ; Isotropy ; Manufacturing ; Mechanical properties ; Microstructure ; Recrystallization ; Tensile properties ; Titanium alloys ; Titanium base alloys ; Ultimate tensile strength</subject><ispartof>Science China. Technological sciences, 2022, Vol.65 (4), p.849-857</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-77cf7c528cd3681d9f3fe0ccd07c4f4f78406c3ed17f200aca02cf0e9302674f3</citedby><cites>FETCH-LOGICAL-c316t-77cf7c528cd3681d9f3fe0ccd07c4f4f78406c3ed17f200aca02cf0e9302674f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-021-1991-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-021-1991-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Cheng, Kui</creatorcontrib><creatorcontrib>Zhang, MingBo</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Liu, XinWang</creatorcontrib><creatorcontrib>Fan, ZiTian</creatorcontrib><creatorcontrib>Wang, GuiLan</creatorcontrib><creatorcontrib>Zhang, HaiOu</creatorcontrib><title>Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>To address the problems of coarse columnar grains, inhomogeneous microstructure, and anisotropic mechanical properties of Ti-6Al-4V manufactured by wire and arc additive manufacturing (WAAM) and hybrid additive manufacturing with plasma-arc deposition, synchronous microrolling (HDMR) was examined in this study. HDMR leads to significant grain refinement and isotropy improvement. Unrolled additive manufacturing alloys show typical columnar grains, while the microrolled ones show a transition from columnar to equiaxed grains with the fraction depending on the microrolling force. The microrolling-induced formation of equiaxed grains is caused by both dendrite fragmentation and prior β recrystallization in the subsequent deposition. Interestingly, the rolling force required for good grain refinement in HDMR is much lower than that in WAAM with subsequent cold rolling. Microstructure characteristics are present near the grain boundaries due to the recrystallized α lamellae distribution. The width of the basketweave α lamellae decreases with the increasing microrolling force. The yield strength and ultimate tensile strength of HDMR samples increase with a decrease in elongation anisotropy. This study shows that HDMR can effectively refine grains and improve the tensile properties of titanium alloys, providing a broad prospect for the rapid formation of large titanium alloy parts.</description><subject>Additive manufacturing</subject><subject>Anisotropy</subject><subject>Arc deposition</subject><subject>Cold rolling</subject><subject>Dendritic structure</subject><subject>Elongation</subject><subject>Engineering</subject><subject>Grain boundaries</subject><subject>Grain refinement</subject><subject>Isotropy</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Recrystallization</subject><subject>Tensile properties</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Ultimate tensile strength</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKByEUh4coKKoHaCe0zTqOk47t_kQ3CNpUWzEvZTjjpDPBvEcPnNMErXKjB3-Xw1dVRwROCQA_y4Q0lGCoCSZCEMy3qj3SMlEmgO3yZrzBnNZktzrM-R3Koa0A0uxVXxtj_Og_LepUPzmlxyn5_hVFhx49ZpuAm2ekQogzepnR2_ySvEFDULlTWCWNjB1iLgGxR6o3qPM6xRRDKBkX6CYp36MupuEthvg6n6z_eUzT0mNPfjyj7bMPFg0pDjaN3uaDasepkO3h771fPV1fPV7e4vuHm7vLzT3WlLARc64d1-d1qw1lLTHCUWdBawNcN65xvG2AaWoN4a4GUFpBrR1YQaEuRBzdr47X3FL9Mdk8yvc4pb5Uypoxdk6F4KKoyKpaVs_JOjkk36k0SwJy4S9X_rLwlwt_yYunXj15WHDa9Jf8v-kbMNaKxg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cheng, Kui</creator><creator>Zhang, MingBo</creator><creator>Song, Hao</creator><creator>Liu, XinWang</creator><creator>Fan, ZiTian</creator><creator>Wang, GuiLan</creator><creator>Zhang, HaiOu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties</title><author>Cheng, Kui ; Zhang, MingBo ; Song, Hao ; Liu, XinWang ; Fan, ZiTian ; Wang, GuiLan ; Zhang, HaiOu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-77cf7c528cd3681d9f3fe0ccd07c4f4f78406c3ed17f200aca02cf0e9302674f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Anisotropy</topic><topic>Arc deposition</topic><topic>Cold rolling</topic><topic>Dendritic structure</topic><topic>Elongation</topic><topic>Engineering</topic><topic>Grain boundaries</topic><topic>Grain refinement</topic><topic>Isotropy</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Recrystallization</topic><topic>Tensile properties</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Kui</creatorcontrib><creatorcontrib>Zhang, MingBo</creatorcontrib><creatorcontrib>Song, Hao</creatorcontrib><creatorcontrib>Liu, XinWang</creatorcontrib><creatorcontrib>Fan, ZiTian</creatorcontrib><creatorcontrib>Wang, GuiLan</creatorcontrib><creatorcontrib>Zhang, HaiOu</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Kui</au><au>Zhang, MingBo</au><au>Song, Hao</au><au>Liu, XinWang</au><au>Fan, ZiTian</au><au>Wang, GuiLan</au><au>Zhang, HaiOu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2022</date><risdate>2022</risdate><volume>65</volume><issue>4</issue><spage>849</spage><epage>857</epage><pages>849-857</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>To address the problems of coarse columnar grains, inhomogeneous microstructure, and anisotropic mechanical properties of Ti-6Al-4V manufactured by wire and arc additive manufacturing (WAAM) and hybrid additive manufacturing with plasma-arc deposition, synchronous microrolling (HDMR) was examined in this study. HDMR leads to significant grain refinement and isotropy improvement. Unrolled additive manufacturing alloys show typical columnar grains, while the microrolled ones show a transition from columnar to equiaxed grains with the fraction depending on the microrolling force. The microrolling-induced formation of equiaxed grains is caused by both dendrite fragmentation and prior β recrystallization in the subsequent deposition. Interestingly, the rolling force required for good grain refinement in HDMR is much lower than that in WAAM with subsequent cold rolling. Microstructure characteristics are present near the grain boundaries due to the recrystallized α lamellae distribution. The width of the basketweave α lamellae decreases with the increasing microrolling force. The yield strength and ultimate tensile strength of HDMR samples increase with a decrease in elongation anisotropy. This study shows that HDMR can effectively refine grains and improve the tensile properties of titanium alloys, providing a broad prospect for the rapid formation of large titanium alloy parts.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-021-1991-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2022, Vol.65 (4), p.849-857
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_2666539979
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Additive manufacturing
Anisotropy
Arc deposition
Cold rolling
Dendritic structure
Elongation
Engineering
Grain boundaries
Grain refinement
Isotropy
Manufacturing
Mechanical properties
Microstructure
Recrystallization
Tensile properties
Titanium alloys
Titanium base alloys
Ultimate tensile strength
title Additive manufacturing of Ti-6Al-4V alloy by hybrid plasma-arc deposition and microrolling: Grain morphology, microstructure, and tensile properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20manufacturing%20of%20Ti-6Al-4V%20alloy%20by%20hybrid%20plasma-arc%20deposition%20and%20microrolling:%20Grain%20morphology,%20microstructure,%20and%20tensile%20properties&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Cheng,%20Kui&rft.date=2022&rft.volume=65&rft.issue=4&rft.spage=849&rft.epage=857&rft.pages=849-857&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-021-1991-7&rft_dat=%3Cproquest_cross%3E2666539979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666539979&rft_id=info:pmid/&rfr_iscdi=true