Estimation of Forearm Motion Based on EMG Using Quaternion Neural Network

Quaternions are useful for representing data in three-dimensional space, and the quaternion neural network is effective for learning data in this context. On the other hand, estimating biological motion based on myopotential can be performed directly using electromyogram (EMG) signals as the compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2022-05, Vol.26 (3), p.269-278
Hauptverfasser: Hashim, Hafizzuddin Firdaus Bin, Ogawa, Takehiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 3
container_start_page 269
container_title Journal of advanced computational intelligence and intelligent informatics
container_volume 26
creator Hashim, Hafizzuddin Firdaus Bin
Ogawa, Takehiko
description Quaternions are useful for representing data in three-dimensional space, and the quaternion neural network is effective for learning data in this context. On the other hand, estimating biological motion based on myopotential can be performed directly using electromyogram (EMG) signals as the computer interface. The trajectory of human forearm movement within the three-dimensional space can provide important information. In this study, the relationship between the myopotential of the upper arm muscles and the forearm motion was estimated and investigated using a quaternion neural network.
doi_str_mv 10.20965/jaciii.2022.p0269
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666481799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666481799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-1ec44262dabfdb962bb20db3ab48a9871e398062c512e42117af7c5ef6e5d7633</originalsourceid><addsrcrecordid>eNotkEFPwzAMhSMEEtPYH-BUiXOH46RpcoSpG5M2EBI7R2mboo6tKUkrxL8n2zi9Z_vJlj9C7inMEZTIHvemats2FojzHlCoKzKhUrJUAuXX0TPOUqAMbskshD1A9CiA0wlZF2Foj2ZoXZe4Jlk6b40_Jlt37jybYOskmmK7Snah7T6T99EM1nen6asdvTlEGX6c_7ojN405BDv71ynZLYuPxUu6eVutF0-btGIZDCm1FecosDZlU5dKYFki1CUzJZdGyZxapiQIrDKKliOluWnyKrONsFmdC8am5OGyt_fue7Rh0Hs3-i6e1CiE4JLmSsUUXlKVdyF42-jexz_9r6agz9T0hZo-UdNnauwPUD1gkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666481799</pqid></control><display><type>article</type><title>Estimation of Forearm Motion Based on EMG Using Quaternion Neural Network</title><source>DOAJ Directory of Open Access Journals</source><creator>Hashim, Hafizzuddin Firdaus Bin ; Ogawa, Takehiko</creator><creatorcontrib>Hashim, Hafizzuddin Firdaus Bin ; Ogawa, Takehiko ; Graduate School of Engineering, Takushoku University 815-1 Tatemachi, Hachioji, Tokyo 193-0985, Japan</creatorcontrib><description>Quaternions are useful for representing data in three-dimensional space, and the quaternion neural network is effective for learning data in this context. On the other hand, estimating biological motion based on myopotential can be performed directly using electromyogram (EMG) signals as the computer interface. The trajectory of human forearm movement within the three-dimensional space can provide important information. In this study, the relationship between the myopotential of the upper arm muscles and the forearm motion was estimated and investigated using a quaternion neural network.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2022.p0269</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Electromyography ; Estimation ; Forearm ; Human motion ; Muscles ; Neural networks ; Quaternions ; Three dimensional motion</subject><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2022-05, Vol.26 (3), p.269-278</ispartof><rights>Copyright © 2022 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-1ec44262dabfdb962bb20db3ab48a9871e398062c512e42117af7c5ef6e5d7633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Hashim, Hafizzuddin Firdaus Bin</creatorcontrib><creatorcontrib>Ogawa, Takehiko</creatorcontrib><creatorcontrib>Graduate School of Engineering, Takushoku University 815-1 Tatemachi, Hachioji, Tokyo 193-0985, Japan</creatorcontrib><title>Estimation of Forearm Motion Based on EMG Using Quaternion Neural Network</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>Quaternions are useful for representing data in three-dimensional space, and the quaternion neural network is effective for learning data in this context. On the other hand, estimating biological motion based on myopotential can be performed directly using electromyogram (EMG) signals as the computer interface. The trajectory of human forearm movement within the three-dimensional space can provide important information. In this study, the relationship between the myopotential of the upper arm muscles and the forearm motion was estimated and investigated using a quaternion neural network.</description><subject>Electromyography</subject><subject>Estimation</subject><subject>Forearm</subject><subject>Human motion</subject><subject>Muscles</subject><subject>Neural networks</subject><subject>Quaternions</subject><subject>Three dimensional motion</subject><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEFPwzAMhSMEEtPYH-BUiXOH46RpcoSpG5M2EBI7R2mboo6tKUkrxL8n2zi9Z_vJlj9C7inMEZTIHvemats2FojzHlCoKzKhUrJUAuXX0TPOUqAMbskshD1A9CiA0wlZF2Foj2ZoXZe4Jlk6b40_Jlt37jybYOskmmK7Snah7T6T99EM1nen6asdvTlEGX6c_7ojN405BDv71ynZLYuPxUu6eVutF0-btGIZDCm1FecosDZlU5dKYFki1CUzJZdGyZxapiQIrDKKliOluWnyKrONsFmdC8am5OGyt_fue7Rh0Hs3-i6e1CiE4JLmSsUUXlKVdyF42-jexz_9r6agz9T0hZo-UdNnauwPUD1gkg</recordid><startdate>20220520</startdate><enddate>20220520</enddate><creator>Hashim, Hafizzuddin Firdaus Bin</creator><creator>Ogawa, Takehiko</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220520</creationdate><title>Estimation of Forearm Motion Based on EMG Using Quaternion Neural Network</title><author>Hashim, Hafizzuddin Firdaus Bin ; Ogawa, Takehiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-1ec44262dabfdb962bb20db3ab48a9871e398062c512e42117af7c5ef6e5d7633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electromyography</topic><topic>Estimation</topic><topic>Forearm</topic><topic>Human motion</topic><topic>Muscles</topic><topic>Neural networks</topic><topic>Quaternions</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashim, Hafizzuddin Firdaus Bin</creatorcontrib><creatorcontrib>Ogawa, Takehiko</creatorcontrib><creatorcontrib>Graduate School of Engineering, Takushoku University 815-1 Tatemachi, Hachioji, Tokyo 193-0985, Japan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashim, Hafizzuddin Firdaus Bin</au><au>Ogawa, Takehiko</au><aucorp>Graduate School of Engineering, Takushoku University 815-1 Tatemachi, Hachioji, Tokyo 193-0985, Japan</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Forearm Motion Based on EMG Using Quaternion Neural Network</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2022-05-20</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>269</spage><epage>278</epage><pages>269-278</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>Quaternions are useful for representing data in three-dimensional space, and the quaternion neural network is effective for learning data in this context. On the other hand, estimating biological motion based on myopotential can be performed directly using electromyogram (EMG) signals as the computer interface. The trajectory of human forearm movement within the three-dimensional space can provide important information. In this study, the relationship between the myopotential of the upper arm muscles and the forearm motion was estimated and investigated using a quaternion neural network.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/jaciii.2022.p0269</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1343-0130
ispartof Journal of advanced computational intelligence and intelligent informatics, 2022-05, Vol.26 (3), p.269-278
issn 1343-0130
1883-8014
language eng
recordid cdi_proquest_journals_2666481799
source DOAJ Directory of Open Access Journals
subjects Electromyography
Estimation
Forearm
Human motion
Muscles
Neural networks
Quaternions
Three dimensional motion
title Estimation of Forearm Motion Based on EMG Using Quaternion Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Forearm%20Motion%20Based%20on%20EMG%20Using%20Quaternion%20Neural%20Network&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Hashim,%20Hafizzuddin%20Firdaus%20Bin&rft.aucorp=Graduate%20School%20of%20Engineering,%20Takushoku%20University%20815-1%20Tatemachi,%20Hachioji,%20Tokyo%20193-0985,%20Japan&rft.date=2022-05-20&rft.volume=26&rft.issue=3&rft.spage=269&rft.epage=278&rft.pages=269-278&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2022.p0269&rft_dat=%3Cproquest_cross%3E2666481799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666481799&rft_id=info:pmid/&rfr_iscdi=true