A New Dynamic Indentation Tool for Rapid Mechanical Properties Profiling and Mapping
Surface measurements are used extensively in many industries and research disciplines to characterize a material’s mechanical properties and strength without the need for traditional, time consuming, and expensive laboratory tests, or for large volumes of sample material. This paper briefly reviews...
Gespeichert in:
Veröffentlicht in: | Rock mechanics and rock engineering 2022-05, Vol.55 (5), p.2597-2613 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2613 |
---|---|
container_issue | 5 |
container_start_page | 2597 |
container_title | Rock mechanics and rock engineering |
container_volume | 55 |
creator | Hampton, Jesse C. Boitnott, Gregory N. Louis, Laurent |
description | Surface measurements are used extensively in many industries and research disciplines to characterize a material’s mechanical properties and strength without the need for traditional, time consuming, and expensive laboratory tests, or for large volumes of sample material. This paper briefly reviews indentation methodologies for index and physical properties measurements and then focuses on the implementation of a method of using the measured force versus time of an impact to infer mechanical properties. By relying only on the measurement of force versus time, the method greatly simplifies the measurement process and thus allows for applications requiring rapid and automated measurements of both elastic stiffness and/or inelastic deformation during indentation. The indenter tip geometry, free-fall height, and the mechanical model used to describe the interaction of the contact between the indenter and material are investigated through the analysis of measurements performed on a wide variety of materials including plastics, rocks, ceramics, and asphalt. It is shown that using a spherical tip the method can be used to provide measurements of the elastic stiffness by fitting the measured force versus time curves to predictions of quasi static elastic theory. We then show how conversion of the force–time data into force–displacement curves realizes a direct connection with the already established static indentation interpretation framework. Through the use of force–displacement interpretation, the method becomes applicable to arbitrary tip geometries and inelastic mechanical properties. Through illustrative examples, we show how the force–displacement data from an impact can be interrogated for critical parameters such as loading and unloading characteristics, and maximum, residual, and elastic displacement. |
doi_str_mv | 10.1007/s00603-021-02626-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2666121494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666121494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9c838d8609ac2ea98ba405da9f6de46191e79f5a02cce712e983a9fb8a960163</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwFPA82oeu9nNsVSthfpAKngL02y2pmyTNdki_famruDNwzAD_8fAD6FLSq4pIeVNJEQQnhFG0wgmsuIIjWjO8ywv-PsxGpGS8YwJzk7RWYwbQpJYViO0nOAn84Vv9w62VuO5q43robfe4aX3LW58wK_Q2Ro_Gv0Bzmpo8UvwnQm9NfFwNra1bo3BJQ90XbrP0UkDbTQXv3uM3u7vltOHbPE8m08ni0xzKvuslrriVV0JIkEzA7JaQU6KGmQjapMLKqkpZVMAYVqbkjIjK57EVQVSECr4GF0NvV3wnzsTe7Xxu-DSS8WEEJTRXObJxQaXDj7GYBrVBbuFsFeUqAM9NdBTiZ76oaeKFOJDKCazW5vwV_1P6htyXHHV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666121494</pqid></control><display><type>article</type><title>A New Dynamic Indentation Tool for Rapid Mechanical Properties Profiling and Mapping</title><source>SpringerNature Journals</source><creator>Hampton, Jesse C. ; Boitnott, Gregory N. ; Louis, Laurent</creator><creatorcontrib>Hampton, Jesse C. ; Boitnott, Gregory N. ; Louis, Laurent</creatorcontrib><description>Surface measurements are used extensively in many industries and research disciplines to characterize a material’s mechanical properties and strength without the need for traditional, time consuming, and expensive laboratory tests, or for large volumes of sample material. This paper briefly reviews indentation methodologies for index and physical properties measurements and then focuses on the implementation of a method of using the measured force versus time of an impact to infer mechanical properties. By relying only on the measurement of force versus time, the method greatly simplifies the measurement process and thus allows for applications requiring rapid and automated measurements of both elastic stiffness and/or inelastic deformation during indentation. The indenter tip geometry, free-fall height, and the mechanical model used to describe the interaction of the contact between the indenter and material are investigated through the analysis of measurements performed on a wide variety of materials including plastics, rocks, ceramics, and asphalt. It is shown that using a spherical tip the method can be used to provide measurements of the elastic stiffness by fitting the measured force versus time curves to predictions of quasi static elastic theory. We then show how conversion of the force–time data into force–displacement curves realizes a direct connection with the already established static indentation interpretation framework. Through the use of force–displacement interpretation, the method becomes applicable to arbitrary tip geometries and inelastic mechanical properties. Through illustrative examples, we show how the force–displacement data from an impact can be interrogated for critical parameters such as loading and unloading characteristics, and maximum, residual, and elastic displacement.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-021-02626-5</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Asphalt ; Ceramics ; Civil Engineering ; Deformation ; Displacement ; Earth and Environmental Science ; Earth Sciences ; Elastic deformation ; Force measurement ; Geophysics/Geodesy ; Indentation ; Industry ; Laboratory tests ; Measurement ; Mechanical properties ; Methods ; Original Paper ; Physical properties ; Stiffness ; Unloading</subject><ispartof>Rock mechanics and rock engineering, 2022-05, Vol.55 (5), p.2597-2613</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9c838d8609ac2ea98ba405da9f6de46191e79f5a02cce712e983a9fb8a960163</citedby><cites>FETCH-LOGICAL-c319t-d9c838d8609ac2ea98ba405da9f6de46191e79f5a02cce712e983a9fb8a960163</cites><orcidid>0000-0001-8568-3100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-021-02626-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-021-02626-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Hampton, Jesse C.</creatorcontrib><creatorcontrib>Boitnott, Gregory N.</creatorcontrib><creatorcontrib>Louis, Laurent</creatorcontrib><title>A New Dynamic Indentation Tool for Rapid Mechanical Properties Profiling and Mapping</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>Surface measurements are used extensively in many industries and research disciplines to characterize a material’s mechanical properties and strength without the need for traditional, time consuming, and expensive laboratory tests, or for large volumes of sample material. This paper briefly reviews indentation methodologies for index and physical properties measurements and then focuses on the implementation of a method of using the measured force versus time of an impact to infer mechanical properties. By relying only on the measurement of force versus time, the method greatly simplifies the measurement process and thus allows for applications requiring rapid and automated measurements of both elastic stiffness and/or inelastic deformation during indentation. The indenter tip geometry, free-fall height, and the mechanical model used to describe the interaction of the contact between the indenter and material are investigated through the analysis of measurements performed on a wide variety of materials including plastics, rocks, ceramics, and asphalt. It is shown that using a spherical tip the method can be used to provide measurements of the elastic stiffness by fitting the measured force versus time curves to predictions of quasi static elastic theory. We then show how conversion of the force–time data into force–displacement curves realizes a direct connection with the already established static indentation interpretation framework. Through the use of force–displacement interpretation, the method becomes applicable to arbitrary tip geometries and inelastic mechanical properties. Through illustrative examples, we show how the force–displacement data from an impact can be interrogated for critical parameters such as loading and unloading characteristics, and maximum, residual, and elastic displacement.</description><subject>Asphalt</subject><subject>Ceramics</subject><subject>Civil Engineering</subject><subject>Deformation</subject><subject>Displacement</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Elastic deformation</subject><subject>Force measurement</subject><subject>Geophysics/Geodesy</subject><subject>Indentation</subject><subject>Industry</subject><subject>Laboratory tests</subject><subject>Measurement</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Physical properties</subject><subject>Stiffness</subject><subject>Unloading</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEQx4MoWKtfwFPA82oeu9nNsVSthfpAKngL02y2pmyTNdki_famruDNwzAD_8fAD6FLSq4pIeVNJEQQnhFG0wgmsuIIjWjO8ywv-PsxGpGS8YwJzk7RWYwbQpJYViO0nOAn84Vv9w62VuO5q43robfe4aX3LW58wK_Q2Ro_Gv0Bzmpo8UvwnQm9NfFwNra1bo3BJQ90XbrP0UkDbTQXv3uM3u7vltOHbPE8m08ni0xzKvuslrriVV0JIkEzA7JaQU6KGmQjapMLKqkpZVMAYVqbkjIjK57EVQVSECr4GF0NvV3wnzsTe7Xxu-DSS8WEEJTRXObJxQaXDj7GYBrVBbuFsFeUqAM9NdBTiZ76oaeKFOJDKCazW5vwV_1P6htyXHHV</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Hampton, Jesse C.</creator><creator>Boitnott, Gregory N.</creator><creator>Louis, Laurent</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8568-3100</orcidid></search><sort><creationdate>20220501</creationdate><title>A New Dynamic Indentation Tool for Rapid Mechanical Properties Profiling and Mapping</title><author>Hampton, Jesse C. ; Boitnott, Gregory N. ; Louis, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9c838d8609ac2ea98ba405da9f6de46191e79f5a02cce712e983a9fb8a960163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asphalt</topic><topic>Ceramics</topic><topic>Civil Engineering</topic><topic>Deformation</topic><topic>Displacement</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Elastic deformation</topic><topic>Force measurement</topic><topic>Geophysics/Geodesy</topic><topic>Indentation</topic><topic>Industry</topic><topic>Laboratory tests</topic><topic>Measurement</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Physical properties</topic><topic>Stiffness</topic><topic>Unloading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hampton, Jesse C.</creatorcontrib><creatorcontrib>Boitnott, Gregory N.</creatorcontrib><creatorcontrib>Louis, Laurent</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hampton, Jesse C.</au><au>Boitnott, Gregory N.</au><au>Louis, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Dynamic Indentation Tool for Rapid Mechanical Properties Profiling and Mapping</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>55</volume><issue>5</issue><spage>2597</spage><epage>2613</epage><pages>2597-2613</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Surface measurements are used extensively in many industries and research disciplines to characterize a material’s mechanical properties and strength without the need for traditional, time consuming, and expensive laboratory tests, or for large volumes of sample material. This paper briefly reviews indentation methodologies for index and physical properties measurements and then focuses on the implementation of a method of using the measured force versus time of an impact to infer mechanical properties. By relying only on the measurement of force versus time, the method greatly simplifies the measurement process and thus allows for applications requiring rapid and automated measurements of both elastic stiffness and/or inelastic deformation during indentation. The indenter tip geometry, free-fall height, and the mechanical model used to describe the interaction of the contact between the indenter and material are investigated through the analysis of measurements performed on a wide variety of materials including plastics, rocks, ceramics, and asphalt. It is shown that using a spherical tip the method can be used to provide measurements of the elastic stiffness by fitting the measured force versus time curves to predictions of quasi static elastic theory. We then show how conversion of the force–time data into force–displacement curves realizes a direct connection with the already established static indentation interpretation framework. Through the use of force–displacement interpretation, the method becomes applicable to arbitrary tip geometries and inelastic mechanical properties. Through illustrative examples, we show how the force–displacement data from an impact can be interrogated for critical parameters such as loading and unloading characteristics, and maximum, residual, and elastic displacement.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-021-02626-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8568-3100</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2022-05, Vol.55 (5), p.2597-2613 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_proquest_journals_2666121494 |
source | SpringerNature Journals |
subjects | Asphalt Ceramics Civil Engineering Deformation Displacement Earth and Environmental Science Earth Sciences Elastic deformation Force measurement Geophysics/Geodesy Indentation Industry Laboratory tests Measurement Mechanical properties Methods Original Paper Physical properties Stiffness Unloading |
title | A New Dynamic Indentation Tool for Rapid Mechanical Properties Profiling and Mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Dynamic%20Indentation%20Tool%20for%20Rapid%20Mechanical%20Properties%20Profiling%20and%20Mapping&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Hampton,%20Jesse%20C.&rft.date=2022-05-01&rft.volume=55&rft.issue=5&rft.spage=2597&rft.epage=2613&rft.pages=2597-2613&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-021-02626-5&rft_dat=%3Cproquest_cross%3E2666121494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666121494&rft_id=info:pmid/&rfr_iscdi=true |