Mining Stable Quasi-Cliques on Temporal Networks
Real-world networks, such as phone-call networks and social networks, are often not static but temporal. Mining cohesive subgraphs from static graphs is a fundamental task in network analysis and has been widely investigated in the past decades. However, the concepts of cohesive subgraphs shift from...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2022-06, Vol.52 (6), p.3731-3745 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3745 |
---|---|
container_issue | 6 |
container_start_page | 3731 |
container_title | IEEE transactions on systems, man, and cybernetics. Systems |
container_volume | 52 |
creator | Lin, Longlong Yuan, Pingpeng Li, Rong-Hua Wang, Jifei Liu, Ling Jin, Hai |
description | Real-world networks, such as phone-call networks and social networks, are often not static but temporal. Mining cohesive subgraphs from static graphs is a fundamental task in network analysis and has been widely investigated in the past decades. However, the concepts of cohesive subgraphs shift from static to temporal graphs raise many important problems. For instance, how to detect stable cohesive subgraphs on temporal networks such that the nodes in the subgraph are densely and stably connected over time. To address this problem, we resort to the conventional quasi-clique and propose a new model, called maximal \rho -stable ( \delta, \gamma )-quasi-clique, to capture both the cohesiveness and the stability of a subgraph. We show that the problem of enumerating all maximal \rho -stable ( \delta, \gamma )-quasi-cliques is NP-hard. To efficiently tackle our problem, we first devise a novel temporal graph reduction algorithm to significantly reduce the temporal graph without losing any maximal \rho -stable ( \delta, \gamma )-quasi-clique. Then, on the reduced temporal graph, we propose an effective branch and bound enumeration algorithm, named BB&SCM , with four carefully designed pruning techniques to accomplish the enumeration process. Finally, we conduct extensive experiments on seven real-world temporal graphs, and the results demonstrate that the temporal graph reduction algorithm can safely reduce 98% nodes of the temporal graph (with millions of nodes and edges) and BB&SCM is at least two orders of magnitude faster than the baseline algorithms. Moreover, we also evaluate the effectiveness of our model against other baseline models. |
doi_str_mv | 10.1109/TSMC.2021.3071721 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2665840300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9424972</ieee_id><sourcerecordid>2665840300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-78a90cdfb45c49bbe3cfbd7a6d206b10a3a429b12349f178700fd41cb67d4c23</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-APES8Jw6M7vdzR4l-AWtIs192U02kpomdTdF_Pc2tPQ0c3jed4aHsVuEOSLoh2K9yucEhHMOChXhBZsQyiwl4nR53lFes1mMGwBAyiQHOWGwarqm-0rWg3WtTz73NjZp3jY_ex-TvksKv931wbbJux9--_Adb9hVbdvoZ6c5ZcXzU5G_psuPl7f8cZmWnMshVZnVUFa1E4tSaOc8L2tXKSsrAukQLLeCtEPiQteoMgVQVwJLJ1UlSuJTdn-s3YV-_GUwm34fusNFQ1IuMgEc4EDhkSpDH2PwtdmFZmvDn0EwoxozqjGjGnNSc8jcHTON9_7Ma0FCK-L_k61d6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665840300</pqid></control><display><type>article</type><title>Mining Stable Quasi-Cliques on Temporal Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Longlong ; Yuan, Pingpeng ; Li, Rong-Hua ; Wang, Jifei ; Liu, Ling ; Jin, Hai</creator><creatorcontrib>Lin, Longlong ; Yuan, Pingpeng ; Li, Rong-Hua ; Wang, Jifei ; Liu, Ling ; Jin, Hai</creatorcontrib><description><![CDATA[Real-world networks, such as phone-call networks and social networks, are often not static but temporal. Mining cohesive subgraphs from static graphs is a fundamental task in network analysis and has been widely investigated in the past decades. However, the concepts of cohesive subgraphs shift from static to temporal graphs raise many important problems. For instance, how to detect stable cohesive subgraphs on temporal networks such that the nodes in the subgraph are densely and stably connected over time. To address this problem, we resort to the conventional quasi-clique and propose a new model, called maximal <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula>-stable (<inline-formula> <tex-math notation="LaTeX">\delta, \gamma </tex-math></inline-formula>)-quasi-clique, to capture both the cohesiveness and the stability of a subgraph. We show that the problem of enumerating all maximal <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula>-stable (<inline-formula> <tex-math notation="LaTeX">\delta, \gamma </tex-math></inline-formula>)-quasi-cliques is NP-hard. To efficiently tackle our problem, we first devise a novel temporal graph reduction algorithm to significantly reduce the temporal graph without losing any maximal <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula>-stable (<inline-formula> <tex-math notation="LaTeX">\delta, \gamma </tex-math></inline-formula>)-quasi-clique. Then, on the reduced temporal graph, we propose an effective branch and bound enumeration algorithm, named BB&SCM , with four carefully designed pruning techniques to accomplish the enumeration process. Finally, we conduct extensive experiments on seven real-world temporal graphs, and the results demonstrate that the temporal graph reduction algorithm can safely reduce 98% nodes of the temporal graph (with millions of nodes and edges) and BB&SCM is at least two orders of magnitude faster than the baseline algorithms. Moreover, we also evaluate the effectiveness of our model against other baseline models.]]></description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2021.3071721</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cohesion ; Collaboration ; Enumeration ; Games ; Graph theory ; Graphs ; Image edge detection ; Network analysis ; Nodes ; Pattern matching ; Quasi-clique ; Reduction ; Science - general ; Social networks ; stable cohesive subgraph detection ; Task analysis ; temporal networks ; US Government</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2022-06, Vol.52 (6), p.3731-3745</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-78a90cdfb45c49bbe3cfbd7a6d206b10a3a429b12349f178700fd41cb67d4c23</citedby><cites>FETCH-LOGICAL-c336t-78a90cdfb45c49bbe3cfbd7a6d206b10a3a429b12349f178700fd41cb67d4c23</cites><orcidid>0000-0002-3934-7605 ; 0000-0002-1656-5634 ; 0000-0002-4138-3082 ; 0000-0002-2194-8146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9424972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9424972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Longlong</creatorcontrib><creatorcontrib>Yuan, Pingpeng</creatorcontrib><creatorcontrib>Li, Rong-Hua</creatorcontrib><creatorcontrib>Wang, Jifei</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Jin, Hai</creatorcontrib><title>Mining Stable Quasi-Cliques on Temporal Networks</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description><![CDATA[Real-world networks, such as phone-call networks and social networks, are often not static but temporal. Mining cohesive subgraphs from static graphs is a fundamental task in network analysis and has been widely investigated in the past decades. However, the concepts of cohesive subgraphs shift from static to temporal graphs raise many important problems. For instance, how to detect stable cohesive subgraphs on temporal networks such that the nodes in the subgraph are densely and stably connected over time. To address this problem, we resort to the conventional quasi-clique and propose a new model, called maximal <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula>-stable (<inline-formula> <tex-math notation="LaTeX">\delta, \gamma </tex-math></inline-formula>)-quasi-clique, to capture both the cohesiveness and the stability of a subgraph. We show that the problem of enumerating all maximal <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula>-stable (<inline-formula> <tex-math notation="LaTeX">\delta, \gamma </tex-math></inline-formula>)-quasi-cliques is NP-hard. To efficiently tackle our problem, we first devise a novel temporal graph reduction algorithm to significantly reduce the temporal graph without losing any maximal <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula>-stable (<inline-formula> <tex-math notation="LaTeX">\delta, \gamma </tex-math></inline-formula>)-quasi-clique. Then, on the reduced temporal graph, we propose an effective branch and bound enumeration algorithm, named BB&SCM , with four carefully designed pruning techniques to accomplish the enumeration process. Finally, we conduct extensive experiments on seven real-world temporal graphs, and the results demonstrate that the temporal graph reduction algorithm can safely reduce 98% nodes of the temporal graph (with millions of nodes and edges) and BB&SCM is at least two orders of magnitude faster than the baseline algorithms. Moreover, we also evaluate the effectiveness of our model against other baseline models.]]></description><subject>Algorithms</subject><subject>Cohesion</subject><subject>Collaboration</subject><subject>Enumeration</subject><subject>Games</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Image edge detection</subject><subject>Network analysis</subject><subject>Nodes</subject><subject>Pattern matching</subject><subject>Quasi-clique</subject><subject>Reduction</subject><subject>Science - general</subject><subject>Social networks</subject><subject>stable cohesive subgraph detection</subject><subject>Task analysis</subject><subject>temporal networks</subject><subject>US Government</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsNT-APES8Jw6M7vdzR4l-AWtIs192U02kpomdTdF_Pc2tPQ0c3jed4aHsVuEOSLoh2K9yucEhHMOChXhBZsQyiwl4nR53lFes1mMGwBAyiQHOWGwarqm-0rWg3WtTz73NjZp3jY_ex-TvksKv931wbbJux9--_Adb9hVbdvoZ6c5ZcXzU5G_psuPl7f8cZmWnMshVZnVUFa1E4tSaOc8L2tXKSsrAukQLLeCtEPiQteoMgVQVwJLJ1UlSuJTdn-s3YV-_GUwm34fusNFQ1IuMgEc4EDhkSpDH2PwtdmFZmvDn0EwoxozqjGjGnNSc8jcHTON9_7Ma0FCK-L_k61d6A</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lin, Longlong</creator><creator>Yuan, Pingpeng</creator><creator>Li, Rong-Hua</creator><creator>Wang, Jifei</creator><creator>Liu, Ling</creator><creator>Jin, Hai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3934-7605</orcidid><orcidid>https://orcid.org/0000-0002-1656-5634</orcidid><orcidid>https://orcid.org/0000-0002-4138-3082</orcidid><orcidid>https://orcid.org/0000-0002-2194-8146</orcidid></search><sort><creationdate>20220601</creationdate><title>Mining Stable Quasi-Cliques on Temporal Networks</title><author>Lin, Longlong ; Yuan, Pingpeng ; Li, Rong-Hua ; Wang, Jifei ; Liu, Ling ; Jin, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-78a90cdfb45c49bbe3cfbd7a6d206b10a3a429b12349f178700fd41cb67d4c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cohesion</topic><topic>Collaboration</topic><topic>Enumeration</topic><topic>Games</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Image edge detection</topic><topic>Network analysis</topic><topic>Nodes</topic><topic>Pattern matching</topic><topic>Quasi-clique</topic><topic>Reduction</topic><topic>Science - general</topic><topic>Social networks</topic><topic>stable cohesive subgraph detection</topic><topic>Task analysis</topic><topic>temporal networks</topic><topic>US Government</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Longlong</creatorcontrib><creatorcontrib>Yuan, Pingpeng</creatorcontrib><creatorcontrib>Li, Rong-Hua</creatorcontrib><creatorcontrib>Wang, Jifei</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Jin, Hai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Longlong</au><au>Yuan, Pingpeng</au><au>Li, Rong-Hua</au><au>Wang, Jifei</au><au>Liu, Ling</au><au>Jin, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining Stable Quasi-Cliques on Temporal Networks</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>52</volume><issue>6</issue><spage>3731</spage><epage>3745</epage><pages>3731-3745</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract><![CDATA[Real-world networks, such as phone-call networks and social networks, are often not static but temporal. Mining cohesive subgraphs from static graphs is a fundamental task in network analysis and has been widely investigated in the past decades. However, the concepts of cohesive subgraphs shift from static to temporal graphs raise many important problems. For instance, how to detect stable cohesive subgraphs on temporal networks such that the nodes in the subgraph are densely and stably connected over time. To address this problem, we resort to the conventional quasi-clique and propose a new model, called maximal <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula>-stable (<inline-formula> <tex-math notation="LaTeX">\delta, \gamma </tex-math></inline-formula>)-quasi-clique, to capture both the cohesiveness and the stability of a subgraph. We show that the problem of enumerating all maximal <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula>-stable (<inline-formula> <tex-math notation="LaTeX">\delta, \gamma </tex-math></inline-formula>)-quasi-cliques is NP-hard. To efficiently tackle our problem, we first devise a novel temporal graph reduction algorithm to significantly reduce the temporal graph without losing any maximal <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula>-stable (<inline-formula> <tex-math notation="LaTeX">\delta, \gamma </tex-math></inline-formula>)-quasi-clique. Then, on the reduced temporal graph, we propose an effective branch and bound enumeration algorithm, named BB&SCM , with four carefully designed pruning techniques to accomplish the enumeration process. Finally, we conduct extensive experiments on seven real-world temporal graphs, and the results demonstrate that the temporal graph reduction algorithm can safely reduce 98% nodes of the temporal graph (with millions of nodes and edges) and BB&SCM is at least two orders of magnitude faster than the baseline algorithms. Moreover, we also evaluate the effectiveness of our model against other baseline models.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2021.3071721</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3934-7605</orcidid><orcidid>https://orcid.org/0000-0002-1656-5634</orcidid><orcidid>https://orcid.org/0000-0002-4138-3082</orcidid><orcidid>https://orcid.org/0000-0002-2194-8146</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2216 |
ispartof | IEEE transactions on systems, man, and cybernetics. Systems, 2022-06, Vol.52 (6), p.3731-3745 |
issn | 2168-2216 2168-2232 |
language | eng |
recordid | cdi_proquest_journals_2665840300 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cohesion Collaboration Enumeration Games Graph theory Graphs Image edge detection Network analysis Nodes Pattern matching Quasi-clique Reduction Science - general Social networks stable cohesive subgraph detection Task analysis temporal networks US Government |
title | Mining Stable Quasi-Cliques on Temporal Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20Stable%20Quasi-Cliques%20on%20Temporal%20Networks&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Lin,%20Longlong&rft.date=2022-06-01&rft.volume=52&rft.issue=6&rft.spage=3731&rft.epage=3745&rft.pages=3731-3745&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2021.3071721&rft_dat=%3Cproquest_RIE%3E2665840300%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665840300&rft_id=info:pmid/&rft_ieee_id=9424972&rfr_iscdi=true |