Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming

Effective recognition of communication jamming is of vital importance in improving wireless communication system's anti-jamming capability. Motivated by the major challenges that the jamming data sets in wireless communication system are often small and the recognition performance may be poor,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2022-04, Vol.16 (3), p.395-405
Hauptverfasser: Liu, Mingqian, Liu, Zilong, Lu, Weidang, Chen, Yunfei, Gao, Xiaoteng, Zhao, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue 3
container_start_page 395
container_title IEEE journal of selected topics in signal processing
container_volume 16
creator Liu, Mingqian
Liu, Zilong
Lu, Weidang
Chen, Yunfei
Gao, Xiaoteng
Zhao, Nan
description Effective recognition of communication jamming is of vital importance in improving wireless communication system's anti-jamming capability. Motivated by the major challenges that the jamming data sets in wireless communication system are often small and the recognition performance may be poor, we introduce a novel jamming recognition method based on distributed few-shot learning in this paper. Our proposed method employs a distributed recognition architecture to achieve the global optimization of multiple sub-networks by federated learning. It also introduces a dense block structure in the sub-network structure to improve network information flow by the feature multiplexing and configuration bypass to improve resistance to over-fitting. Our key idea is to first obtain the time-frequency diagram, fractional Fourier transform and constellation diagram of the communication jamming signal as the model-agnostic meta-learning network input, and then train the distributed network through federated learning for jamming recognition. Simulation results show that our proposed method leads to excellent recognition performance with a small data set.
doi_str_mv 10.1109/JSTSP.2021.3137028
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2665817526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9658166</ieee_id><sourcerecordid>2665817526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1719c9b4a2e4becff7ec492a476f4197c7e2a05c5985fa3d42ec41a52f610daa3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8LnrfmO5ujVKstBaWt55CmSU3pJprNIv57d9viaYaZ95mBB4BbBEcIQfkwW66W7yMMMRoRRATE1RkYIElRCWlFz_ue4JIyRi7BVdPsIGSCIzoAiyff5OTXbbabYmJ_yuVnzMXc6hR82BYupmIast3v_daGXCysidvgs4-hiK4Yx7pugzf6MJjpuu6ga3Dh9L6xN6c6BB-T59X4tZy_vUzHj_PSECJziQSSRq6pxpaurXFOWEMl1lRwR5EURlisITNMVsxpsqG42yPNsOMIbrQmQ3B_vPuV4ndrm6x2sU2he6kw56xCgmHepfAxZVJsmmSd-kq-1ulXIah6d-rgTvXu1MldB90dIW-t_Qdkf5Rz8gel3mu-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665817526</pqid></control><display><type>article</type><title>Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Mingqian ; Liu, Zilong ; Lu, Weidang ; Chen, Yunfei ; Gao, Xiaoteng ; Zhao, Nan</creator><creatorcontrib>Liu, Mingqian ; Liu, Zilong ; Lu, Weidang ; Chen, Yunfei ; Gao, Xiaoteng ; Zhao, Nan</creatorcontrib><description>Effective recognition of communication jamming is of vital importance in improving wireless communication system's anti-jamming capability. Motivated by the major challenges that the jamming data sets in wireless communication system are often small and the recognition performance may be poor, we introduce a novel jamming recognition method based on distributed few-shot learning in this paper. Our proposed method employs a distributed recognition architecture to achieve the global optimization of multiple sub-networks by federated learning. It also introduces a dense block structure in the sub-network structure to improve network information flow by the feature multiplexing and configuration bypass to improve resistance to over-fitting. Our key idea is to first obtain the time-frequency diagram, fractional Fourier transform and constellation diagram of the communication jamming signal as the model-agnostic meta-learning network input, and then train the distributed network through federated learning for jamming recognition. Simulation results show that our proposed method leads to excellent recognition performance with a small data set.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2021.3137028</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Collaborative work ; Communications systems ; Computer networks ; Datasets ; Feature extraction ; Federated learning ; few-shot learning ; Fourier transforms ; Frequency modulation ; Global optimization ; Information flow ; Jamming ; jamming recognition ; model-agnostic meta-learning ; Multiplexing ; Recognition ; Time-frequency analysis ; Training ; Wireless communication ; Wireless communication systems ; Wireless communications ; Wireless networks</subject><ispartof>IEEE journal of selected topics in signal processing, 2022-04, Vol.16 (3), p.395-405</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1719c9b4a2e4becff7ec492a476f4197c7e2a05c5985fa3d42ec41a52f610daa3</citedby><cites>FETCH-LOGICAL-c339t-1719c9b4a2e4becff7ec492a476f4197c7e2a05c5985fa3d42ec41a52f610daa3</cites><orcidid>0000-0002-8919-0327 ; 0000-0001-5151-6929 ; 0000-0001-9872-9710 ; 0000-0002-6497-7799 ; 0000-0001-8083-1805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9658166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9658166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Mingqian</creatorcontrib><creatorcontrib>Liu, Zilong</creatorcontrib><creatorcontrib>Lu, Weidang</creatorcontrib><creatorcontrib>Chen, Yunfei</creatorcontrib><creatorcontrib>Gao, Xiaoteng</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><title>Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Effective recognition of communication jamming is of vital importance in improving wireless communication system's anti-jamming capability. Motivated by the major challenges that the jamming data sets in wireless communication system are often small and the recognition performance may be poor, we introduce a novel jamming recognition method based on distributed few-shot learning in this paper. Our proposed method employs a distributed recognition architecture to achieve the global optimization of multiple sub-networks by federated learning. It also introduces a dense block structure in the sub-network structure to improve network information flow by the feature multiplexing and configuration bypass to improve resistance to over-fitting. Our key idea is to first obtain the time-frequency diagram, fractional Fourier transform and constellation diagram of the communication jamming signal as the model-agnostic meta-learning network input, and then train the distributed network through federated learning for jamming recognition. Simulation results show that our proposed method leads to excellent recognition performance with a small data set.</description><subject>Collaborative work</subject><subject>Communications systems</subject><subject>Computer networks</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Federated learning</subject><subject>few-shot learning</subject><subject>Fourier transforms</subject><subject>Frequency modulation</subject><subject>Global optimization</subject><subject>Information flow</subject><subject>Jamming</subject><subject>jamming recognition</subject><subject>model-agnostic meta-learning</subject><subject>Multiplexing</subject><subject>Recognition</subject><subject>Time-frequency analysis</subject><subject>Training</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8LnrfmO5ujVKstBaWt55CmSU3pJprNIv57d9viaYaZ95mBB4BbBEcIQfkwW66W7yMMMRoRRATE1RkYIElRCWlFz_ue4JIyRi7BVdPsIGSCIzoAiyff5OTXbbabYmJ_yuVnzMXc6hR82BYupmIast3v_daGXCysidvgs4-hiK4Yx7pugzf6MJjpuu6ga3Dh9L6xN6c6BB-T59X4tZy_vUzHj_PSECJziQSSRq6pxpaurXFOWEMl1lRwR5EURlisITNMVsxpsqG42yPNsOMIbrQmQ3B_vPuV4ndrm6x2sU2he6kw56xCgmHepfAxZVJsmmSd-kq-1ulXIah6d-rgTvXu1MldB90dIW-t_Qdkf5Rz8gel3mu-</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Liu, Mingqian</creator><creator>Liu, Zilong</creator><creator>Lu, Weidang</creator><creator>Chen, Yunfei</creator><creator>Gao, Xiaoteng</creator><creator>Zhao, Nan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8919-0327</orcidid><orcidid>https://orcid.org/0000-0001-5151-6929</orcidid><orcidid>https://orcid.org/0000-0001-9872-9710</orcidid><orcidid>https://orcid.org/0000-0002-6497-7799</orcidid><orcidid>https://orcid.org/0000-0001-8083-1805</orcidid></search><sort><creationdate>20220401</creationdate><title>Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming</title><author>Liu, Mingqian ; Liu, Zilong ; Lu, Weidang ; Chen, Yunfei ; Gao, Xiaoteng ; Zhao, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1719c9b4a2e4becff7ec492a476f4197c7e2a05c5985fa3d42ec41a52f610daa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Collaborative work</topic><topic>Communications systems</topic><topic>Computer networks</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Federated learning</topic><topic>few-shot learning</topic><topic>Fourier transforms</topic><topic>Frequency modulation</topic><topic>Global optimization</topic><topic>Information flow</topic><topic>Jamming</topic><topic>jamming recognition</topic><topic>model-agnostic meta-learning</topic><topic>Multiplexing</topic><topic>Recognition</topic><topic>Time-frequency analysis</topic><topic>Training</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Mingqian</creatorcontrib><creatorcontrib>Liu, Zilong</creatorcontrib><creatorcontrib>Lu, Weidang</creatorcontrib><creatorcontrib>Chen, Yunfei</creatorcontrib><creatorcontrib>Gao, Xiaoteng</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Mingqian</au><au>Liu, Zilong</au><au>Lu, Weidang</au><au>Chen, Yunfei</au><au>Gao, Xiaoteng</au><au>Zhao, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><spage>395</spage><epage>405</epage><pages>395-405</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Effective recognition of communication jamming is of vital importance in improving wireless communication system's anti-jamming capability. Motivated by the major challenges that the jamming data sets in wireless communication system are often small and the recognition performance may be poor, we introduce a novel jamming recognition method based on distributed few-shot learning in this paper. Our proposed method employs a distributed recognition architecture to achieve the global optimization of multiple sub-networks by federated learning. It also introduces a dense block structure in the sub-network structure to improve network information flow by the feature multiplexing and configuration bypass to improve resistance to over-fitting. Our key idea is to first obtain the time-frequency diagram, fractional Fourier transform and constellation diagram of the communication jamming signal as the model-agnostic meta-learning network input, and then train the distributed network through federated learning for jamming recognition. Simulation results show that our proposed method leads to excellent recognition performance with a small data set.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2021.3137028</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8919-0327</orcidid><orcidid>https://orcid.org/0000-0001-5151-6929</orcidid><orcidid>https://orcid.org/0000-0001-9872-9710</orcidid><orcidid>https://orcid.org/0000-0002-6497-7799</orcidid><orcidid>https://orcid.org/0000-0001-8083-1805</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2022-04, Vol.16 (3), p.395-405
issn 1932-4553
1941-0484
language eng
recordid cdi_proquest_journals_2665817526
source IEEE Electronic Library (IEL)
subjects Collaborative work
Communications systems
Computer networks
Datasets
Feature extraction
Federated learning
few-shot learning
Fourier transforms
Frequency modulation
Global optimization
Information flow
Jamming
jamming recognition
model-agnostic meta-learning
Multiplexing
Recognition
Time-frequency analysis
Training
Wireless communication
Wireless communication systems
Wireless communications
Wireless networks
title Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Few-Shot%20Learning%20for%20Intelligent%20Recognition%20of%20Communication%20Jamming&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Liu,%20Mingqian&rft.date=2022-04-01&rft.volume=16&rft.issue=3&rft.spage=395&rft.epage=405&rft.pages=395-405&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2021.3137028&rft_dat=%3Cproquest_RIE%3E2665817526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665817526&rft_id=info:pmid/&rft_ieee_id=9658166&rfr_iscdi=true