Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming
Effective recognition of communication jamming is of vital importance in improving wireless communication system's anti-jamming capability. Motivated by the major challenges that the jamming data sets in wireless communication system are often small and the recognition performance may be poor,...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2022-04, Vol.16 (3), p.395-405 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405 |
---|---|
container_issue | 3 |
container_start_page | 395 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 16 |
creator | Liu, Mingqian Liu, Zilong Lu, Weidang Chen, Yunfei Gao, Xiaoteng Zhao, Nan |
description | Effective recognition of communication jamming is of vital importance in improving wireless communication system's anti-jamming capability. Motivated by the major challenges that the jamming data sets in wireless communication system are often small and the recognition performance may be poor, we introduce a novel jamming recognition method based on distributed few-shot learning in this paper. Our proposed method employs a distributed recognition architecture to achieve the global optimization of multiple sub-networks by federated learning. It also introduces a dense block structure in the sub-network structure to improve network information flow by the feature multiplexing and configuration bypass to improve resistance to over-fitting. Our key idea is to first obtain the time-frequency diagram, fractional Fourier transform and constellation diagram of the communication jamming signal as the model-agnostic meta-learning network input, and then train the distributed network through federated learning for jamming recognition. Simulation results show that our proposed method leads to excellent recognition performance with a small data set. |
doi_str_mv | 10.1109/JSTSP.2021.3137028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2665817526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9658166</ieee_id><sourcerecordid>2665817526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1719c9b4a2e4becff7ec492a476f4197c7e2a05c5985fa3d42ec41a52f610daa3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8LnrfmO5ujVKstBaWt55CmSU3pJprNIv57d9viaYaZ95mBB4BbBEcIQfkwW66W7yMMMRoRRATE1RkYIElRCWlFz_ue4JIyRi7BVdPsIGSCIzoAiyff5OTXbbabYmJ_yuVnzMXc6hR82BYupmIast3v_daGXCysidvgs4-hiK4Yx7pugzf6MJjpuu6ga3Dh9L6xN6c6BB-T59X4tZy_vUzHj_PSECJziQSSRq6pxpaurXFOWEMl1lRwR5EURlisITNMVsxpsqG42yPNsOMIbrQmQ3B_vPuV4ndrm6x2sU2he6kw56xCgmHepfAxZVJsmmSd-kq-1ulXIah6d-rgTvXu1MldB90dIW-t_Qdkf5Rz8gel3mu-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665817526</pqid></control><display><type>article</type><title>Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Mingqian ; Liu, Zilong ; Lu, Weidang ; Chen, Yunfei ; Gao, Xiaoteng ; Zhao, Nan</creator><creatorcontrib>Liu, Mingqian ; Liu, Zilong ; Lu, Weidang ; Chen, Yunfei ; Gao, Xiaoteng ; Zhao, Nan</creatorcontrib><description>Effective recognition of communication jamming is of vital importance in improving wireless communication system's anti-jamming capability. Motivated by the major challenges that the jamming data sets in wireless communication system are often small and the recognition performance may be poor, we introduce a novel jamming recognition method based on distributed few-shot learning in this paper. Our proposed method employs a distributed recognition architecture to achieve the global optimization of multiple sub-networks by federated learning. It also introduces a dense block structure in the sub-network structure to improve network information flow by the feature multiplexing and configuration bypass to improve resistance to over-fitting. Our key idea is to first obtain the time-frequency diagram, fractional Fourier transform and constellation diagram of the communication jamming signal as the model-agnostic meta-learning network input, and then train the distributed network through federated learning for jamming recognition. Simulation results show that our proposed method leads to excellent recognition performance with a small data set.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2021.3137028</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Collaborative work ; Communications systems ; Computer networks ; Datasets ; Feature extraction ; Federated learning ; few-shot learning ; Fourier transforms ; Frequency modulation ; Global optimization ; Information flow ; Jamming ; jamming recognition ; model-agnostic meta-learning ; Multiplexing ; Recognition ; Time-frequency analysis ; Training ; Wireless communication ; Wireless communication systems ; Wireless communications ; Wireless networks</subject><ispartof>IEEE journal of selected topics in signal processing, 2022-04, Vol.16 (3), p.395-405</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1719c9b4a2e4becff7ec492a476f4197c7e2a05c5985fa3d42ec41a52f610daa3</citedby><cites>FETCH-LOGICAL-c339t-1719c9b4a2e4becff7ec492a476f4197c7e2a05c5985fa3d42ec41a52f610daa3</cites><orcidid>0000-0002-8919-0327 ; 0000-0001-5151-6929 ; 0000-0001-9872-9710 ; 0000-0002-6497-7799 ; 0000-0001-8083-1805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9658166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9658166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Mingqian</creatorcontrib><creatorcontrib>Liu, Zilong</creatorcontrib><creatorcontrib>Lu, Weidang</creatorcontrib><creatorcontrib>Chen, Yunfei</creatorcontrib><creatorcontrib>Gao, Xiaoteng</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><title>Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Effective recognition of communication jamming is of vital importance in improving wireless communication system's anti-jamming capability. Motivated by the major challenges that the jamming data sets in wireless communication system are often small and the recognition performance may be poor, we introduce a novel jamming recognition method based on distributed few-shot learning in this paper. Our proposed method employs a distributed recognition architecture to achieve the global optimization of multiple sub-networks by federated learning. It also introduces a dense block structure in the sub-network structure to improve network information flow by the feature multiplexing and configuration bypass to improve resistance to over-fitting. Our key idea is to first obtain the time-frequency diagram, fractional Fourier transform and constellation diagram of the communication jamming signal as the model-agnostic meta-learning network input, and then train the distributed network through federated learning for jamming recognition. Simulation results show that our proposed method leads to excellent recognition performance with a small data set.</description><subject>Collaborative work</subject><subject>Communications systems</subject><subject>Computer networks</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Federated learning</subject><subject>few-shot learning</subject><subject>Fourier transforms</subject><subject>Frequency modulation</subject><subject>Global optimization</subject><subject>Information flow</subject><subject>Jamming</subject><subject>jamming recognition</subject><subject>model-agnostic meta-learning</subject><subject>Multiplexing</subject><subject>Recognition</subject><subject>Time-frequency analysis</subject><subject>Training</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8LnrfmO5ujVKstBaWt55CmSU3pJprNIv57d9viaYaZ95mBB4BbBEcIQfkwW66W7yMMMRoRRATE1RkYIElRCWlFz_ue4JIyRi7BVdPsIGSCIzoAiyff5OTXbbabYmJ_yuVnzMXc6hR82BYupmIast3v_daGXCysidvgs4-hiK4Yx7pugzf6MJjpuu6ga3Dh9L6xN6c6BB-T59X4tZy_vUzHj_PSECJziQSSRq6pxpaurXFOWEMl1lRwR5EURlisITNMVsxpsqG42yPNsOMIbrQmQ3B_vPuV4ndrm6x2sU2he6kw56xCgmHepfAxZVJsmmSd-kq-1ulXIah6d-rgTvXu1MldB90dIW-t_Qdkf5Rz8gel3mu-</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Liu, Mingqian</creator><creator>Liu, Zilong</creator><creator>Lu, Weidang</creator><creator>Chen, Yunfei</creator><creator>Gao, Xiaoteng</creator><creator>Zhao, Nan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8919-0327</orcidid><orcidid>https://orcid.org/0000-0001-5151-6929</orcidid><orcidid>https://orcid.org/0000-0001-9872-9710</orcidid><orcidid>https://orcid.org/0000-0002-6497-7799</orcidid><orcidid>https://orcid.org/0000-0001-8083-1805</orcidid></search><sort><creationdate>20220401</creationdate><title>Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming</title><author>Liu, Mingqian ; Liu, Zilong ; Lu, Weidang ; Chen, Yunfei ; Gao, Xiaoteng ; Zhao, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1719c9b4a2e4becff7ec492a476f4197c7e2a05c5985fa3d42ec41a52f610daa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Collaborative work</topic><topic>Communications systems</topic><topic>Computer networks</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Federated learning</topic><topic>few-shot learning</topic><topic>Fourier transforms</topic><topic>Frequency modulation</topic><topic>Global optimization</topic><topic>Information flow</topic><topic>Jamming</topic><topic>jamming recognition</topic><topic>model-agnostic meta-learning</topic><topic>Multiplexing</topic><topic>Recognition</topic><topic>Time-frequency analysis</topic><topic>Training</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Mingqian</creatorcontrib><creatorcontrib>Liu, Zilong</creatorcontrib><creatorcontrib>Lu, Weidang</creatorcontrib><creatorcontrib>Chen, Yunfei</creatorcontrib><creatorcontrib>Gao, Xiaoteng</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Mingqian</au><au>Liu, Zilong</au><au>Lu, Weidang</au><au>Chen, Yunfei</au><au>Gao, Xiaoteng</au><au>Zhao, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><spage>395</spage><epage>405</epage><pages>395-405</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Effective recognition of communication jamming is of vital importance in improving wireless communication system's anti-jamming capability. Motivated by the major challenges that the jamming data sets in wireless communication system are often small and the recognition performance may be poor, we introduce a novel jamming recognition method based on distributed few-shot learning in this paper. Our proposed method employs a distributed recognition architecture to achieve the global optimization of multiple sub-networks by federated learning. It also introduces a dense block structure in the sub-network structure to improve network information flow by the feature multiplexing and configuration bypass to improve resistance to over-fitting. Our key idea is to first obtain the time-frequency diagram, fractional Fourier transform and constellation diagram of the communication jamming signal as the model-agnostic meta-learning network input, and then train the distributed network through federated learning for jamming recognition. Simulation results show that our proposed method leads to excellent recognition performance with a small data set.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2021.3137028</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8919-0327</orcidid><orcidid>https://orcid.org/0000-0001-5151-6929</orcidid><orcidid>https://orcid.org/0000-0001-9872-9710</orcidid><orcidid>https://orcid.org/0000-0002-6497-7799</orcidid><orcidid>https://orcid.org/0000-0001-8083-1805</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2022-04, Vol.16 (3), p.395-405 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_proquest_journals_2665817526 |
source | IEEE Electronic Library (IEL) |
subjects | Collaborative work Communications systems Computer networks Datasets Feature extraction Federated learning few-shot learning Fourier transforms Frequency modulation Global optimization Information flow Jamming jamming recognition model-agnostic meta-learning Multiplexing Recognition Time-frequency analysis Training Wireless communication Wireless communication systems Wireless communications Wireless networks |
title | Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Few-Shot%20Learning%20for%20Intelligent%20Recognition%20of%20Communication%20Jamming&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Liu,%20Mingqian&rft.date=2022-04-01&rft.volume=16&rft.issue=3&rft.spage=395&rft.epage=405&rft.pages=395-405&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2021.3137028&rft_dat=%3Cproquest_RIE%3E2665817526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665817526&rft_id=info:pmid/&rft_ieee_id=9658166&rfr_iscdi=true |