Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension

The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot research topic of this decade, featuring the challenging task of the robust control with actuator time delay considerations. In this study, a delay dependent sliding mode variable structure control, based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.51128-51141
Hauptverfasser: Zhu, Maofei, Lv, Gang, Zhang, Chunpeng, Jiang, Jianman, Wang, Huiran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51141
container_issue
container_start_page 51128
container_title IEEE access
container_volume 10
creator Zhu, Maofei
Lv, Gang
Zhang, Chunpeng
Jiang, Jianman
Wang, Huiran
description The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot research topic of this decade, featuring the challenging task of the robust control with actuator time delay considerations. In this study, a delay dependent sliding mode variable structure control, based on the Linear Matrix Inequality (LMI), is proposed to suppress the vibration of the Magneto-Rheological Semi-Active Suspension (MRSS) control system. In accordance with the nonlinear characteristics of MRD, a dynamic model of automotive semi-active suspension system, considering time delay, is established. By defining a parameter-dependent Lyapunov switching functional, the conditions for asymptotic stability of closed-loop time delay system are derived, while the sliding mode variable structure control with reduced conservatism is designed. According to the method of LMI, the asymptotic stability problem of sliding mode is transformed into a feasibility problem, which can be solved by the solver 'feasp' in LMI toolbox. In addition, the calculation of the critical time delay of MRSS is expressed as a generalized eigenvalue optimization problem. For comparison purposes, three representative controllers, including a conventional sliding mode controller, a delay dependent controller, and a smith compensation, are studied. Simulation and real vehicle testing on bump and random road responses show that, the designed delay dependent controller can ensure the stability of the suspension system, weaken the influence of time delay on the control performance and effectively improve the ride comfort of the vehicle.
doi_str_mv 10.1109/ACCESS.2022.3173605
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2665816100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9771258</ieee_id><doaj_id>oai_doaj_org_article_285a18225c7b44b78c06faf5e011cfb1</doaj_id><sourcerecordid>2665816100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-15395c0199f970884dab22b4aa236d2471cfba8fcd1139207b89ddd0e9ef2c1a3</originalsourceid><addsrcrecordid>eNpNUU1P5DAMrVYgLWL5BVwqce5sPpomOY4KuyCBVqLANUoTZ8io0wxputL8ezIUIXyxZfu9Z_kVxSVGK4yR_L1u25uuWxFEyIpiThvEfhRnBDeyoow2J9_qn8XFNG1RDpFbjJ8Vu2sY9KG6hj2MFsZUdoO3ftyUD8FC-aKj1_0AZZfibNIcoWzDmGIYyuDKF3j1Jg8f9GaEFKrHVwhD2Hijh7KDna_WJvn_GTxPmX3yYfxVnDo9THDxmc-L5z83T-1tdf_v7127vq9MjUSqMKOSGYSldJIjIWqre0L6WmtCG0tqjo3rtXDGYkwlQbwX0lqLQIIjBmt6XtwtvDbordpHv9PxoIL26qMR4kbpmI7HKyKYxoIQZnhf1z0XBjVOOwYIH1Vw5rpauPYxvM0wJbUNcxzz-Yo0DcuPxAjlLbpsmRimKYL7UsVIHW1Si03qaJP6tCmjLheUB4AvhOQcEyboO0Wkjoc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665816100</pqid></control><display><type>article</type><title>Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Maofei ; Lv, Gang ; Zhang, Chunpeng ; Jiang, Jianman ; Wang, Huiran</creator><creatorcontrib>Zhu, Maofei ; Lv, Gang ; Zhang, Chunpeng ; Jiang, Jianman ; Wang, Huiran</creatorcontrib><description>The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot research topic of this decade, featuring the challenging task of the robust control with actuator time delay considerations. In this study, a delay dependent sliding mode variable structure control, based on the Linear Matrix Inequality (LMI), is proposed to suppress the vibration of the Magneto-Rheological Semi-Active Suspension (MRSS) control system. In accordance with the nonlinear characteristics of MRD, a dynamic model of automotive semi-active suspension system, considering time delay, is established. By defining a parameter-dependent Lyapunov switching functional, the conditions for asymptotic stability of closed-loop time delay system are derived, while the sliding mode variable structure control with reduced conservatism is designed. According to the method of LMI, the asymptotic stability problem of sliding mode is transformed into a feasibility problem, which can be solved by the solver 'feasp' in LMI toolbox. In addition, the calculation of the critical time delay of MRSS is expressed as a generalized eigenvalue optimization problem. For comparison purposes, three representative controllers, including a conventional sliding mode controller, a delay dependent controller, and a smith compensation, are studied. Simulation and real vehicle testing on bump and random road responses show that, the designed delay dependent controller can ensure the stability of the suspension system, weaken the influence of time delay on the control performance and effectively improve the ride comfort of the vehicle.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3173605</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Active damping ; Actuators ; Asymptotic methods ; Asymptotic properties ; Asymptotic stability ; Control systems ; Control systems design ; Controllers ; Damping ; Delay effects ; Delays ; Dynamic models ; Eigenvalues ; Linear matrix inequalities ; linear matrix inequality ; magneto-rheological damper ; Magnetomechanical effects ; Optimization ; Passenger comfort ; Rheological properties ; Rheology ; Robust control ; Semi-active suspension ; Semiactive damping ; Semiactive suspensions ; Sliding mode control ; sliding mode variable structure control ; time delay ; Time delay systems ; Variable structure control</subject><ispartof>IEEE access, 2022, Vol.10, p.51128-51141</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-15395c0199f970884dab22b4aa236d2471cfba8fcd1139207b89ddd0e9ef2c1a3</citedby><cites>FETCH-LOGICAL-c408t-15395c0199f970884dab22b4aa236d2471cfba8fcd1139207b89ddd0e9ef2c1a3</cites><orcidid>0000-0003-4010-6013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9771258$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,4026,27640,27930,27931,27932,54940</link.rule.ids></links><search><creatorcontrib>Zhu, Maofei</creatorcontrib><creatorcontrib>Lv, Gang</creatorcontrib><creatorcontrib>Zhang, Chunpeng</creatorcontrib><creatorcontrib>Jiang, Jianman</creatorcontrib><creatorcontrib>Wang, Huiran</creatorcontrib><title>Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension</title><title>IEEE access</title><addtitle>Access</addtitle><description>The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot research topic of this decade, featuring the challenging task of the robust control with actuator time delay considerations. In this study, a delay dependent sliding mode variable structure control, based on the Linear Matrix Inequality (LMI), is proposed to suppress the vibration of the Magneto-Rheological Semi-Active Suspension (MRSS) control system. In accordance with the nonlinear characteristics of MRD, a dynamic model of automotive semi-active suspension system, considering time delay, is established. By defining a parameter-dependent Lyapunov switching functional, the conditions for asymptotic stability of closed-loop time delay system are derived, while the sliding mode variable structure control with reduced conservatism is designed. According to the method of LMI, the asymptotic stability problem of sliding mode is transformed into a feasibility problem, which can be solved by the solver 'feasp' in LMI toolbox. In addition, the calculation of the critical time delay of MRSS is expressed as a generalized eigenvalue optimization problem. For comparison purposes, three representative controllers, including a conventional sliding mode controller, a delay dependent controller, and a smith compensation, are studied. Simulation and real vehicle testing on bump and random road responses show that, the designed delay dependent controller can ensure the stability of the suspension system, weaken the influence of time delay on the control performance and effectively improve the ride comfort of the vehicle.</description><subject>Active control</subject><subject>Active damping</subject><subject>Actuators</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Asymptotic stability</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Damping</subject><subject>Delay effects</subject><subject>Delays</subject><subject>Dynamic models</subject><subject>Eigenvalues</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequality</subject><subject>magneto-rheological damper</subject><subject>Magnetomechanical effects</subject><subject>Optimization</subject><subject>Passenger comfort</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Robust control</subject><subject>Semi-active suspension</subject><subject>Semiactive damping</subject><subject>Semiactive suspensions</subject><subject>Sliding mode control</subject><subject>sliding mode variable structure control</subject><subject>time delay</subject><subject>Time delay systems</subject><subject>Variable structure control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P5DAMrVYgLWL5BVwqce5sPpomOY4KuyCBVqLANUoTZ8io0wxputL8ezIUIXyxZfu9Z_kVxSVGK4yR_L1u25uuWxFEyIpiThvEfhRnBDeyoow2J9_qn8XFNG1RDpFbjJ8Vu2sY9KG6hj2MFsZUdoO3ftyUD8FC-aKj1_0AZZfibNIcoWzDmGIYyuDKF3j1Jg8f9GaEFKrHVwhD2Hijh7KDna_WJvn_GTxPmX3yYfxVnDo9THDxmc-L5z83T-1tdf_v7127vq9MjUSqMKOSGYSldJIjIWqre0L6WmtCG0tqjo3rtXDGYkwlQbwX0lqLQIIjBmt6XtwtvDbordpHv9PxoIL26qMR4kbpmI7HKyKYxoIQZnhf1z0XBjVOOwYIH1Vw5rpauPYxvM0wJbUNcxzz-Yo0DcuPxAjlLbpsmRimKYL7UsVIHW1Si03qaJP6tCmjLheUB4AvhOQcEyboO0Wkjoc</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhu, Maofei</creator><creator>Lv, Gang</creator><creator>Zhang, Chunpeng</creator><creator>Jiang, Jianman</creator><creator>Wang, Huiran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4010-6013</orcidid></search><sort><creationdate>2022</creationdate><title>Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension</title><author>Zhu, Maofei ; Lv, Gang ; Zhang, Chunpeng ; Jiang, Jianman ; Wang, Huiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-15395c0199f970884dab22b4aa236d2471cfba8fcd1139207b89ddd0e9ef2c1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Active damping</topic><topic>Actuators</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Asymptotic stability</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Damping</topic><topic>Delay effects</topic><topic>Delays</topic><topic>Dynamic models</topic><topic>Eigenvalues</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequality</topic><topic>magneto-rheological damper</topic><topic>Magnetomechanical effects</topic><topic>Optimization</topic><topic>Passenger comfort</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Robust control</topic><topic>Semi-active suspension</topic><topic>Semiactive damping</topic><topic>Semiactive suspensions</topic><topic>Sliding mode control</topic><topic>sliding mode variable structure control</topic><topic>time delay</topic><topic>Time delay systems</topic><topic>Variable structure control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Maofei</creatorcontrib><creatorcontrib>Lv, Gang</creatorcontrib><creatorcontrib>Zhang, Chunpeng</creatorcontrib><creatorcontrib>Jiang, Jianman</creatorcontrib><creatorcontrib>Wang, Huiran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Maofei</au><au>Lv, Gang</au><au>Zhang, Chunpeng</au><au>Jiang, Jianman</au><au>Wang, Huiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>51128</spage><epage>51141</epage><pages>51128-51141</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot research topic of this decade, featuring the challenging task of the robust control with actuator time delay considerations. In this study, a delay dependent sliding mode variable structure control, based on the Linear Matrix Inequality (LMI), is proposed to suppress the vibration of the Magneto-Rheological Semi-Active Suspension (MRSS) control system. In accordance with the nonlinear characteristics of MRD, a dynamic model of automotive semi-active suspension system, considering time delay, is established. By defining a parameter-dependent Lyapunov switching functional, the conditions for asymptotic stability of closed-loop time delay system are derived, while the sliding mode variable structure control with reduced conservatism is designed. According to the method of LMI, the asymptotic stability problem of sliding mode is transformed into a feasibility problem, which can be solved by the solver 'feasp' in LMI toolbox. In addition, the calculation of the critical time delay of MRSS is expressed as a generalized eigenvalue optimization problem. For comparison purposes, three representative controllers, including a conventional sliding mode controller, a delay dependent controller, and a smith compensation, are studied. Simulation and real vehicle testing on bump and random road responses show that, the designed delay dependent controller can ensure the stability of the suspension system, weaken the influence of time delay on the control performance and effectively improve the ride comfort of the vehicle.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3173605</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4010-6013</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.51128-51141
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2665816100
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Active control
Active damping
Actuators
Asymptotic methods
Asymptotic properties
Asymptotic stability
Control systems
Control systems design
Controllers
Damping
Delay effects
Delays
Dynamic models
Eigenvalues
Linear matrix inequalities
linear matrix inequality
magneto-rheological damper
Magnetomechanical effects
Optimization
Passenger comfort
Rheological properties
Rheology
Robust control
Semi-active suspension
Semiactive damping
Semiactive suspensions
Sliding mode control
sliding mode variable structure control
time delay
Time delay systems
Variable structure control
title Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T15%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay-Dependent%20Sliding%20Mode%20Variable%20Structure%20Control%20of%20Vehicle%20Magneto-Rheological%20Semi-Active%20Suspension&rft.jtitle=IEEE%20access&rft.au=Zhu,%20Maofei&rft.date=2022&rft.volume=10&rft.spage=51128&rft.epage=51141&rft.pages=51128-51141&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3173605&rft_dat=%3Cproquest_ieee_%3E2665816100%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665816100&rft_id=info:pmid/&rft_ieee_id=9771258&rft_doaj_id=oai_doaj_org_article_285a18225c7b44b78c06faf5e011cfb1&rfr_iscdi=true