Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension
The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot research topic of this decade, featuring the challenging task of the robust control with actuator time delay considerations. In this study, a delay dependent sliding mode variable structure control, based on the...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.51128-51141 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51141 |
---|---|
container_issue | |
container_start_page | 51128 |
container_title | IEEE access |
container_volume | 10 |
creator | Zhu, Maofei Lv, Gang Zhang, Chunpeng Jiang, Jianman Wang, Huiran |
description | The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot research topic of this decade, featuring the challenging task of the robust control with actuator time delay considerations. In this study, a delay dependent sliding mode variable structure control, based on the Linear Matrix Inequality (LMI), is proposed to suppress the vibration of the Magneto-Rheological Semi-Active Suspension (MRSS) control system. In accordance with the nonlinear characteristics of MRD, a dynamic model of automotive semi-active suspension system, considering time delay, is established. By defining a parameter-dependent Lyapunov switching functional, the conditions for asymptotic stability of closed-loop time delay system are derived, while the sliding mode variable structure control with reduced conservatism is designed. According to the method of LMI, the asymptotic stability problem of sliding mode is transformed into a feasibility problem, which can be solved by the solver 'feasp' in LMI toolbox. In addition, the calculation of the critical time delay of MRSS is expressed as a generalized eigenvalue optimization problem. For comparison purposes, three representative controllers, including a conventional sliding mode controller, a delay dependent controller, and a smith compensation, are studied. Simulation and real vehicle testing on bump and random road responses show that, the designed delay dependent controller can ensure the stability of the suspension system, weaken the influence of time delay on the control performance and effectively improve the ride comfort of the vehicle. |
doi_str_mv | 10.1109/ACCESS.2022.3173605 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2665816100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9771258</ieee_id><doaj_id>oai_doaj_org_article_285a18225c7b44b78c06faf5e011cfb1</doaj_id><sourcerecordid>2665816100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-15395c0199f970884dab22b4aa236d2471cfba8fcd1139207b89ddd0e9ef2c1a3</originalsourceid><addsrcrecordid>eNpNUU1P5DAMrVYgLWL5BVwqce5sPpomOY4KuyCBVqLANUoTZ8io0wxputL8ezIUIXyxZfu9Z_kVxSVGK4yR_L1u25uuWxFEyIpiThvEfhRnBDeyoow2J9_qn8XFNG1RDpFbjJ8Vu2sY9KG6hj2MFsZUdoO3ftyUD8FC-aKj1_0AZZfibNIcoWzDmGIYyuDKF3j1Jg8f9GaEFKrHVwhD2Hijh7KDna_WJvn_GTxPmX3yYfxVnDo9THDxmc-L5z83T-1tdf_v7127vq9MjUSqMKOSGYSldJIjIWqre0L6WmtCG0tqjo3rtXDGYkwlQbwX0lqLQIIjBmt6XtwtvDbordpHv9PxoIL26qMR4kbpmI7HKyKYxoIQZnhf1z0XBjVOOwYIH1Vw5rpauPYxvM0wJbUNcxzz-Yo0DcuPxAjlLbpsmRimKYL7UsVIHW1Si03qaJP6tCmjLheUB4AvhOQcEyboO0Wkjoc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665816100</pqid></control><display><type>article</type><title>Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Maofei ; Lv, Gang ; Zhang, Chunpeng ; Jiang, Jianman ; Wang, Huiran</creator><creatorcontrib>Zhu, Maofei ; Lv, Gang ; Zhang, Chunpeng ; Jiang, Jianman ; Wang, Huiran</creatorcontrib><description>The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot research topic of this decade, featuring the challenging task of the robust control with actuator time delay considerations. In this study, a delay dependent sliding mode variable structure control, based on the Linear Matrix Inequality (LMI), is proposed to suppress the vibration of the Magneto-Rheological Semi-Active Suspension (MRSS) control system. In accordance with the nonlinear characteristics of MRD, a dynamic model of automotive semi-active suspension system, considering time delay, is established. By defining a parameter-dependent Lyapunov switching functional, the conditions for asymptotic stability of closed-loop time delay system are derived, while the sliding mode variable structure control with reduced conservatism is designed. According to the method of LMI, the asymptotic stability problem of sliding mode is transformed into a feasibility problem, which can be solved by the solver 'feasp' in LMI toolbox. In addition, the calculation of the critical time delay of MRSS is expressed as a generalized eigenvalue optimization problem. For comparison purposes, three representative controllers, including a conventional sliding mode controller, a delay dependent controller, and a smith compensation, are studied. Simulation and real vehicle testing on bump and random road responses show that, the designed delay dependent controller can ensure the stability of the suspension system, weaken the influence of time delay on the control performance and effectively improve the ride comfort of the vehicle.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3173605</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Active damping ; Actuators ; Asymptotic methods ; Asymptotic properties ; Asymptotic stability ; Control systems ; Control systems design ; Controllers ; Damping ; Delay effects ; Delays ; Dynamic models ; Eigenvalues ; Linear matrix inequalities ; linear matrix inequality ; magneto-rheological damper ; Magnetomechanical effects ; Optimization ; Passenger comfort ; Rheological properties ; Rheology ; Robust control ; Semi-active suspension ; Semiactive damping ; Semiactive suspensions ; Sliding mode control ; sliding mode variable structure control ; time delay ; Time delay systems ; Variable structure control</subject><ispartof>IEEE access, 2022, Vol.10, p.51128-51141</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-15395c0199f970884dab22b4aa236d2471cfba8fcd1139207b89ddd0e9ef2c1a3</citedby><cites>FETCH-LOGICAL-c408t-15395c0199f970884dab22b4aa236d2471cfba8fcd1139207b89ddd0e9ef2c1a3</cites><orcidid>0000-0003-4010-6013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9771258$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,4026,27640,27930,27931,27932,54940</link.rule.ids></links><search><creatorcontrib>Zhu, Maofei</creatorcontrib><creatorcontrib>Lv, Gang</creatorcontrib><creatorcontrib>Zhang, Chunpeng</creatorcontrib><creatorcontrib>Jiang, Jianman</creatorcontrib><creatorcontrib>Wang, Huiran</creatorcontrib><title>Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension</title><title>IEEE access</title><addtitle>Access</addtitle><description>The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot research topic of this decade, featuring the challenging task of the robust control with actuator time delay considerations. In this study, a delay dependent sliding mode variable structure control, based on the Linear Matrix Inequality (LMI), is proposed to suppress the vibration of the Magneto-Rheological Semi-Active Suspension (MRSS) control system. In accordance with the nonlinear characteristics of MRD, a dynamic model of automotive semi-active suspension system, considering time delay, is established. By defining a parameter-dependent Lyapunov switching functional, the conditions for asymptotic stability of closed-loop time delay system are derived, while the sliding mode variable structure control with reduced conservatism is designed. According to the method of LMI, the asymptotic stability problem of sliding mode is transformed into a feasibility problem, which can be solved by the solver 'feasp' in LMI toolbox. In addition, the calculation of the critical time delay of MRSS is expressed as a generalized eigenvalue optimization problem. For comparison purposes, three representative controllers, including a conventional sliding mode controller, a delay dependent controller, and a smith compensation, are studied. Simulation and real vehicle testing on bump and random road responses show that, the designed delay dependent controller can ensure the stability of the suspension system, weaken the influence of time delay on the control performance and effectively improve the ride comfort of the vehicle.</description><subject>Active control</subject><subject>Active damping</subject><subject>Actuators</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Asymptotic stability</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Damping</subject><subject>Delay effects</subject><subject>Delays</subject><subject>Dynamic models</subject><subject>Eigenvalues</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequality</subject><subject>magneto-rheological damper</subject><subject>Magnetomechanical effects</subject><subject>Optimization</subject><subject>Passenger comfort</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Robust control</subject><subject>Semi-active suspension</subject><subject>Semiactive damping</subject><subject>Semiactive suspensions</subject><subject>Sliding mode control</subject><subject>sliding mode variable structure control</subject><subject>time delay</subject><subject>Time delay systems</subject><subject>Variable structure control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P5DAMrVYgLWL5BVwqce5sPpomOY4KuyCBVqLANUoTZ8io0wxputL8ezIUIXyxZfu9Z_kVxSVGK4yR_L1u25uuWxFEyIpiThvEfhRnBDeyoow2J9_qn8XFNG1RDpFbjJ8Vu2sY9KG6hj2MFsZUdoO3ftyUD8FC-aKj1_0AZZfibNIcoWzDmGIYyuDKF3j1Jg8f9GaEFKrHVwhD2Hijh7KDna_WJvn_GTxPmX3yYfxVnDo9THDxmc-L5z83T-1tdf_v7127vq9MjUSqMKOSGYSldJIjIWqre0L6WmtCG0tqjo3rtXDGYkwlQbwX0lqLQIIjBmt6XtwtvDbordpHv9PxoIL26qMR4kbpmI7HKyKYxoIQZnhf1z0XBjVOOwYIH1Vw5rpauPYxvM0wJbUNcxzz-Yo0DcuPxAjlLbpsmRimKYL7UsVIHW1Si03qaJP6tCmjLheUB4AvhOQcEyboO0Wkjoc</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhu, Maofei</creator><creator>Lv, Gang</creator><creator>Zhang, Chunpeng</creator><creator>Jiang, Jianman</creator><creator>Wang, Huiran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4010-6013</orcidid></search><sort><creationdate>2022</creationdate><title>Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension</title><author>Zhu, Maofei ; Lv, Gang ; Zhang, Chunpeng ; Jiang, Jianman ; Wang, Huiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-15395c0199f970884dab22b4aa236d2471cfba8fcd1139207b89ddd0e9ef2c1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Active damping</topic><topic>Actuators</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Asymptotic stability</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Damping</topic><topic>Delay effects</topic><topic>Delays</topic><topic>Dynamic models</topic><topic>Eigenvalues</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequality</topic><topic>magneto-rheological damper</topic><topic>Magnetomechanical effects</topic><topic>Optimization</topic><topic>Passenger comfort</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Robust control</topic><topic>Semi-active suspension</topic><topic>Semiactive damping</topic><topic>Semiactive suspensions</topic><topic>Sliding mode control</topic><topic>sliding mode variable structure control</topic><topic>time delay</topic><topic>Time delay systems</topic><topic>Variable structure control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Maofei</creatorcontrib><creatorcontrib>Lv, Gang</creatorcontrib><creatorcontrib>Zhang, Chunpeng</creatorcontrib><creatorcontrib>Jiang, Jianman</creatorcontrib><creatorcontrib>Wang, Huiran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Maofei</au><au>Lv, Gang</au><au>Zhang, Chunpeng</au><au>Jiang, Jianman</au><au>Wang, Huiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>51128</spage><epage>51141</epage><pages>51128-51141</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The vehicle semi-active suspension with Magneto-Rheological Damper (MRD) has been a hot research topic of this decade, featuring the challenging task of the robust control with actuator time delay considerations. In this study, a delay dependent sliding mode variable structure control, based on the Linear Matrix Inequality (LMI), is proposed to suppress the vibration of the Magneto-Rheological Semi-Active Suspension (MRSS) control system. In accordance with the nonlinear characteristics of MRD, a dynamic model of automotive semi-active suspension system, considering time delay, is established. By defining a parameter-dependent Lyapunov switching functional, the conditions for asymptotic stability of closed-loop time delay system are derived, while the sliding mode variable structure control with reduced conservatism is designed. According to the method of LMI, the asymptotic stability problem of sliding mode is transformed into a feasibility problem, which can be solved by the solver 'feasp' in LMI toolbox. In addition, the calculation of the critical time delay of MRSS is expressed as a generalized eigenvalue optimization problem. For comparison purposes, three representative controllers, including a conventional sliding mode controller, a delay dependent controller, and a smith compensation, are studied. Simulation and real vehicle testing on bump and random road responses show that, the designed delay dependent controller can ensure the stability of the suspension system, weaken the influence of time delay on the control performance and effectively improve the ride comfort of the vehicle.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3173605</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4010-6013</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.51128-51141 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2665816100 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Active control Active damping Actuators Asymptotic methods Asymptotic properties Asymptotic stability Control systems Control systems design Controllers Damping Delay effects Delays Dynamic models Eigenvalues Linear matrix inequalities linear matrix inequality magneto-rheological damper Magnetomechanical effects Optimization Passenger comfort Rheological properties Rheology Robust control Semi-active suspension Semiactive damping Semiactive suspensions Sliding mode control sliding mode variable structure control time delay Time delay systems Variable structure control |
title | Delay-Dependent Sliding Mode Variable Structure Control of Vehicle Magneto-Rheological Semi-Active Suspension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T23%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay-Dependent%20Sliding%20Mode%20Variable%20Structure%20Control%20of%20Vehicle%20Magneto-Rheological%20Semi-Active%20Suspension&rft.jtitle=IEEE%20access&rft.au=Zhu,%20Maofei&rft.date=2022&rft.volume=10&rft.spage=51128&rft.epage=51141&rft.pages=51128-51141&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3173605&rft_dat=%3Cproquest_ieee_%3E2665816100%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665816100&rft_id=info:pmid/&rft_ieee_id=9771258&rft_doaj_id=oai_doaj_org_article_285a18225c7b44b78c06faf5e011cfb1&rfr_iscdi=true |