Experiment and Numerical Simulation of Shear Creep of Cu/SAC305/Cu Microscale Solder Joints

Based on the dynamic mechanical analyzer(DMA Q800, TA-Instruments), the shear creep of Cu/Sn-3.0Ag-0.5Cu/Cu lead-free microscale solder joints with a diameter of 400 μm and a height of 250 μm was studied under constant stress(10 MPa) and different temperatures(100 ℃, 110 ℃, 120 ℃), and a constant te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ji xie gong cheng xue bao 2022, Vol.58 (2), p.300
Hauptverfasser: Yin, Limeng, Su, Zilong, Zuo, Cunguo, Zhang, Zhongwen, Yao, Zongxiang, Wang, Gang, Wang, Shanlin, Chen, Yuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 300
container_title Ji xie gong cheng xue bao
container_volume 58
creator Yin, Limeng
Su, Zilong
Zuo, Cunguo
Zhang, Zhongwen
Yao, Zongxiang
Wang, Gang
Wang, Shanlin
Chen, Yuhua
description Based on the dynamic mechanical analyzer(DMA Q800, TA-Instruments), the shear creep of Cu/Sn-3.0Ag-0.5Cu/Cu lead-free microscale solder joints with a diameter of 400 μm and a height of 250 μm was studied under constant stress(10 MPa) and different temperatures(100 ℃, 110 ℃, 120 ℃), and a constant temperature(100 ℃) under different stresses(8 MPa, 10 MPa, 12 MPa). Then, the finite element analysis software ABAQUS was adopted to simulate the shear creep under the same conditions as the experiment. The experiment results show that the activation energy(Q) of SAC305 solder joint is 114.5 kJ/mol under the shear stress of 10 MPa, and the shear creep stress index n is 6.12 at 100 ℃. The simulation results show that the activation energy is 105.49 kJ/mol under 10 MPa, and the shear creep stress index is 6.67 at 100 ℃.According to the creep activation energy and creep stress index, the shear creep mechanism is mainly the lattice diffusion mechanism. In addition, the shear creep fracture pass through the solder matrix and close to the SAC305 solder/IMC interface region, and the fracture is typical ductile fracture.
doi_str_mv 10.3901/JME.2022.02.300
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2665641781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665641781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1550-ef34a17ab00351abd8c1545faf95966a83779b7fb061a53f2e63819554fd0323</originalsourceid><addsrcrecordid>eNotkL1PwzAQxT2ARCnMrJaYk5zt2E7GKiofVQtDujFYTmOLVGkc7ESC_x5HMJ3e6d3dux9CDwRSVgLJdodtSoHSFGjKAK7QCriUiRCFuEG3IZwBWCkpWaGP7fdofHcxw4T10OK3-RLlSfe47i5zr6fODdhZXH8a7XHljRkXWc1ZvakY8Kya8aE7eRfijMG161vj8c51wxTu0LXVfTD3_3WNjk_bY_WS7N-fX6vNPjkRziExluWaSN3EUJzopi1iP-dW25KXQuiCSVk20jYgiObMUiNYQUrOc9sCo2yNHv_Wjt59zSZM6uxmP8SLigrBRU5kQaIr-3MtWYM3Vo3xbe1_FAG1QFMRmlqgKaAqQmO__pNfIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665641781</pqid></control><display><type>article</type><title>Experiment and Numerical Simulation of Shear Creep of Cu/SAC305/Cu Microscale Solder Joints</title><source>Alma/SFX Local Collection</source><creator>Yin, Limeng ; Su, Zilong ; Zuo, Cunguo ; Zhang, Zhongwen ; Yao, Zongxiang ; Wang, Gang ; Wang, Shanlin ; Chen, Yuhua</creator><creatorcontrib>Yin, Limeng ; Su, Zilong ; Zuo, Cunguo ; Zhang, Zhongwen ; Yao, Zongxiang ; Wang, Gang ; Wang, Shanlin ; Chen, Yuhua</creatorcontrib><description>Based on the dynamic mechanical analyzer(DMA Q800, TA-Instruments), the shear creep of Cu/Sn-3.0Ag-0.5Cu/Cu lead-free microscale solder joints with a diameter of 400 μm and a height of 250 μm was studied under constant stress(10 MPa) and different temperatures(100 ℃, 110 ℃, 120 ℃), and a constant temperature(100 ℃) under different stresses(8 MPa, 10 MPa, 12 MPa). Then, the finite element analysis software ABAQUS was adopted to simulate the shear creep under the same conditions as the experiment. The experiment results show that the activation energy(Q) of SAC305 solder joint is 114.5 kJ/mol under the shear stress of 10 MPa, and the shear creep stress index n is 6.12 at 100 ℃. The simulation results show that the activation energy is 105.49 kJ/mol under 10 MPa, and the shear creep stress index is 6.67 at 100 ℃.According to the creep activation energy and creep stress index, the shear creep mechanism is mainly the lattice diffusion mechanism. In addition, the shear creep fracture pass through the solder matrix and close to the SAC305 solder/IMC interface region, and the fracture is typical ductile fracture.</description><identifier>ISSN: 0577-6686</identifier><identifier>DOI: 10.3901/JME.2022.02.300</identifier><language>eng</language><publisher>Beijing: Chinese Mechanical Engineering Society (CMES)</publisher><subject>Activation energy ; Computer simulation ; Ductile fracture ; Experiments ; Finite element method ; Lead free ; Shear creep ; Shear stress ; Soldered joints ; Solders ; Tin base alloys</subject><ispartof>Ji xie gong cheng xue bao, 2022, Vol.58 (2), p.300</ispartof><rights>Copyright Chinese Mechanical Engineering Society (CMES) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1550-ef34a17ab00351abd8c1545faf95966a83779b7fb061a53f2e63819554fd0323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Yin, Limeng</creatorcontrib><creatorcontrib>Su, Zilong</creatorcontrib><creatorcontrib>Zuo, Cunguo</creatorcontrib><creatorcontrib>Zhang, Zhongwen</creatorcontrib><creatorcontrib>Yao, Zongxiang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Shanlin</creatorcontrib><creatorcontrib>Chen, Yuhua</creatorcontrib><title>Experiment and Numerical Simulation of Shear Creep of Cu/SAC305/Cu Microscale Solder Joints</title><title>Ji xie gong cheng xue bao</title><description>Based on the dynamic mechanical analyzer(DMA Q800, TA-Instruments), the shear creep of Cu/Sn-3.0Ag-0.5Cu/Cu lead-free microscale solder joints with a diameter of 400 μm and a height of 250 μm was studied under constant stress(10 MPa) and different temperatures(100 ℃, 110 ℃, 120 ℃), and a constant temperature(100 ℃) under different stresses(8 MPa, 10 MPa, 12 MPa). Then, the finite element analysis software ABAQUS was adopted to simulate the shear creep under the same conditions as the experiment. The experiment results show that the activation energy(Q) of SAC305 solder joint is 114.5 kJ/mol under the shear stress of 10 MPa, and the shear creep stress index n is 6.12 at 100 ℃. The simulation results show that the activation energy is 105.49 kJ/mol under 10 MPa, and the shear creep stress index is 6.67 at 100 ℃.According to the creep activation energy and creep stress index, the shear creep mechanism is mainly the lattice diffusion mechanism. In addition, the shear creep fracture pass through the solder matrix and close to the SAC305 solder/IMC interface region, and the fracture is typical ductile fracture.</description><subject>Activation energy</subject><subject>Computer simulation</subject><subject>Ductile fracture</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Lead free</subject><subject>Shear creep</subject><subject>Shear stress</subject><subject>Soldered joints</subject><subject>Solders</subject><subject>Tin base alloys</subject><issn>0577-6686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkL1PwzAQxT2ARCnMrJaYk5zt2E7GKiofVQtDujFYTmOLVGkc7ESC_x5HMJ3e6d3dux9CDwRSVgLJdodtSoHSFGjKAK7QCriUiRCFuEG3IZwBWCkpWaGP7fdofHcxw4T10OK3-RLlSfe47i5zr6fODdhZXH8a7XHljRkXWc1ZvakY8Kya8aE7eRfijMG161vj8c51wxTu0LXVfTD3_3WNjk_bY_WS7N-fX6vNPjkRziExluWaSN3EUJzopi1iP-dW25KXQuiCSVk20jYgiObMUiNYQUrOc9sCo2yNHv_Wjt59zSZM6uxmP8SLigrBRU5kQaIr-3MtWYM3Vo3xbe1_FAG1QFMRmlqgKaAqQmO__pNfIw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yin, Limeng</creator><creator>Su, Zilong</creator><creator>Zuo, Cunguo</creator><creator>Zhang, Zhongwen</creator><creator>Yao, Zongxiang</creator><creator>Wang, Gang</creator><creator>Wang, Shanlin</creator><creator>Chen, Yuhua</creator><general>Chinese Mechanical Engineering Society (CMES)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2022</creationdate><title>Experiment and Numerical Simulation of Shear Creep of Cu/SAC305/Cu Microscale Solder Joints</title><author>Yin, Limeng ; Su, Zilong ; Zuo, Cunguo ; Zhang, Zhongwen ; Yao, Zongxiang ; Wang, Gang ; Wang, Shanlin ; Chen, Yuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1550-ef34a17ab00351abd8c1545faf95966a83779b7fb061a53f2e63819554fd0323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activation energy</topic><topic>Computer simulation</topic><topic>Ductile fracture</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Lead free</topic><topic>Shear creep</topic><topic>Shear stress</topic><topic>Soldered joints</topic><topic>Solders</topic><topic>Tin base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Limeng</creatorcontrib><creatorcontrib>Su, Zilong</creatorcontrib><creatorcontrib>Zuo, Cunguo</creatorcontrib><creatorcontrib>Zhang, Zhongwen</creatorcontrib><creatorcontrib>Yao, Zongxiang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Shanlin</creatorcontrib><creatorcontrib>Chen, Yuhua</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ji xie gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Limeng</au><au>Su, Zilong</au><au>Zuo, Cunguo</au><au>Zhang, Zhongwen</au><au>Yao, Zongxiang</au><au>Wang, Gang</au><au>Wang, Shanlin</au><au>Chen, Yuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experiment and Numerical Simulation of Shear Creep of Cu/SAC305/Cu Microscale Solder Joints</atitle><jtitle>Ji xie gong cheng xue bao</jtitle><date>2022</date><risdate>2022</risdate><volume>58</volume><issue>2</issue><spage>300</spage><pages>300-</pages><issn>0577-6686</issn><abstract>Based on the dynamic mechanical analyzer(DMA Q800, TA-Instruments), the shear creep of Cu/Sn-3.0Ag-0.5Cu/Cu lead-free microscale solder joints with a diameter of 400 μm and a height of 250 μm was studied under constant stress(10 MPa) and different temperatures(100 ℃, 110 ℃, 120 ℃), and a constant temperature(100 ℃) under different stresses(8 MPa, 10 MPa, 12 MPa). Then, the finite element analysis software ABAQUS was adopted to simulate the shear creep under the same conditions as the experiment. The experiment results show that the activation energy(Q) of SAC305 solder joint is 114.5 kJ/mol under the shear stress of 10 MPa, and the shear creep stress index n is 6.12 at 100 ℃. The simulation results show that the activation energy is 105.49 kJ/mol under 10 MPa, and the shear creep stress index is 6.67 at 100 ℃.According to the creep activation energy and creep stress index, the shear creep mechanism is mainly the lattice diffusion mechanism. In addition, the shear creep fracture pass through the solder matrix and close to the SAC305 solder/IMC interface region, and the fracture is typical ductile fracture.</abstract><cop>Beijing</cop><pub>Chinese Mechanical Engineering Society (CMES)</pub><doi>10.3901/JME.2022.02.300</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0577-6686
ispartof Ji xie gong cheng xue bao, 2022, Vol.58 (2), p.300
issn 0577-6686
language eng
recordid cdi_proquest_journals_2665641781
source Alma/SFX Local Collection
subjects Activation energy
Computer simulation
Ductile fracture
Experiments
Finite element method
Lead free
Shear creep
Shear stress
Soldered joints
Solders
Tin base alloys
title Experiment and Numerical Simulation of Shear Creep of Cu/SAC305/Cu Microscale Solder Joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experiment%20and%20Numerical%20Simulation%20of%20Shear%20Creep%20of%20Cu/SAC305/Cu%20Microscale%20Solder%20Joints&rft.jtitle=Ji%20xie%20gong%20cheng%20xue%20bao&rft.au=Yin,%20Limeng&rft.date=2022&rft.volume=58&rft.issue=2&rft.spage=300&rft.pages=300-&rft.issn=0577-6686&rft_id=info:doi/10.3901/JME.2022.02.300&rft_dat=%3Cproquest_cross%3E2665641781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665641781&rft_id=info:pmid/&rfr_iscdi=true