Geometric Properties of the Maxwell Set and a Vortex Filament Structure for Burgers Equation

The inviscid limit of the stochastic Burgers equation is discussed in terms of the level surfaces of the minimising Hamilton–Jacobi function, the classical mechanical caustic and the Maxwell set and their algebraic pre-images under the classical mechanical flow map. We examine the geometry of the Ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2007-04, Vol.80 (1), p.19-35
Hauptverfasser: Neate, A. D., Truman, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 19
container_title Letters in mathematical physics
container_volume 80
creator Neate, A. D.
Truman, A.
description The inviscid limit of the stochastic Burgers equation is discussed in terms of the level surfaces of the minimising Hamilton–Jacobi function, the classical mechanical caustic and the Maxwell set and their algebraic pre-images under the classical mechanical flow map. We examine the geometry of the Maxwell set in terms of the behaviour of the pre-Maxwell set, the pre-caustic and the pre-level surfaces. In particular, contrary to the ideas of Helmholtz and Lord Kelvin, we prove that even if initially the fluid flow is irrotational, in the inviscid limit, associated with the advent of the Maxwell set a non-zero vorticity vector forms in the fluid with vortex lines on the Maxwell set. This suggests that in quite general circumstances for small viscosity there is a vortex filament structure near the Maxwell set for both deterministic and stochastic Burgers equations.
doi_str_mv 10.1007/s11005-007-0145-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2665621527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665621527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-922b47c373d34c7176656bf45b7fb429c97d3b207b1c5ed64d20d5fad6fe9bf93</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKsP4C7gOpqfyYRZammrUFGouhJCJvmiU6aTNslgfXtnqKt7F5dz4SB0zegto1TdJTaEJEMllBWSiBM0YVIJQqWgp2hChVKkokydo4uUNnQYckkn6HMJYQs5Nha_xrCDmBtIOHicvwE_m8MPtC1eQ8amc9jgjxAzHPCiac0WuozXOfY29xGwDxE_9PELYsLzfW9yE7pLdOZNm-DqP6fofTF_mz2S1cvyaXa_IpYrkUnFeV0oK5RworCKqbKUZe0LWStfF7yylXKi5lTVzEpwZeE4ddIbV3qoal-JKbo5cncx7HtIWW9CH7vhUvORxZkcjqaIHVc2hpQieL2LzdbEX82oHiXqo0Q91lGiFuIPIlNk1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665621527</pqid></control><display><type>article</type><title>Geometric Properties of the Maxwell Set and a Vortex Filament Structure for Burgers Equation</title><source>SpringerLink Journals</source><creator>Neate, A. D. ; Truman, A.</creator><creatorcontrib>Neate, A. D. ; Truman, A.</creatorcontrib><description>The inviscid limit of the stochastic Burgers equation is discussed in terms of the level surfaces of the minimising Hamilton–Jacobi function, the classical mechanical caustic and the Maxwell set and their algebraic pre-images under the classical mechanical flow map. We examine the geometry of the Maxwell set in terms of the behaviour of the pre-Maxwell set, the pre-caustic and the pre-level surfaces. In particular, contrary to the ideas of Helmholtz and Lord Kelvin, we prove that even if initially the fluid flow is irrotational, in the inviscid limit, associated with the advent of the Maxwell set a non-zero vorticity vector forms in the fluid with vortex lines on the Maxwell set. This suggests that in quite general circumstances for small viscosity there is a vortex filament structure near the Maxwell set for both deterministic and stochastic Burgers equations.</description><identifier>ISSN: 0377-9017</identifier><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-007-0145-3</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Burgers equation ; Flow mapping ; Fluid dynamics ; Fluid flow ; Linear equations ; Vortices ; Vorticity</subject><ispartof>Letters in mathematical physics, 2007-04, Vol.80 (1), p.19-35</ispartof><rights>Springer 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-922b47c373d34c7176656bf45b7fb429c97d3b207b1c5ed64d20d5fad6fe9bf93</citedby><cites>FETCH-LOGICAL-c273t-922b47c373d34c7176656bf45b7fb429c97d3b207b1c5ed64d20d5fad6fe9bf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Neate, A. D.</creatorcontrib><creatorcontrib>Truman, A.</creatorcontrib><title>Geometric Properties of the Maxwell Set and a Vortex Filament Structure for Burgers Equation</title><title>Letters in mathematical physics</title><description>The inviscid limit of the stochastic Burgers equation is discussed in terms of the level surfaces of the minimising Hamilton–Jacobi function, the classical mechanical caustic and the Maxwell set and their algebraic pre-images under the classical mechanical flow map. We examine the geometry of the Maxwell set in terms of the behaviour of the pre-Maxwell set, the pre-caustic and the pre-level surfaces. In particular, contrary to the ideas of Helmholtz and Lord Kelvin, we prove that even if initially the fluid flow is irrotational, in the inviscid limit, associated with the advent of the Maxwell set a non-zero vorticity vector forms in the fluid with vortex lines on the Maxwell set. This suggests that in quite general circumstances for small viscosity there is a vortex filament structure near the Maxwell set for both deterministic and stochastic Burgers equations.</description><subject>Burgers equation</subject><subject>Flow mapping</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Linear equations</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>0377-9017</issn><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoWKsP4C7gOpqfyYRZammrUFGouhJCJvmiU6aTNslgfXtnqKt7F5dz4SB0zegto1TdJTaEJEMllBWSiBM0YVIJQqWgp2hChVKkokydo4uUNnQYckkn6HMJYQs5Nha_xrCDmBtIOHicvwE_m8MPtC1eQ8amc9jgjxAzHPCiac0WuozXOfY29xGwDxE_9PELYsLzfW9yE7pLdOZNm-DqP6fofTF_mz2S1cvyaXa_IpYrkUnFeV0oK5RworCKqbKUZe0LWStfF7yylXKi5lTVzEpwZeE4ddIbV3qoal-JKbo5cncx7HtIWW9CH7vhUvORxZkcjqaIHVc2hpQieL2LzdbEX82oHiXqo0Q91lGiFuIPIlNk1g</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Neate, A. D.</creator><creator>Truman, A.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070401</creationdate><title>Geometric Properties of the Maxwell Set and a Vortex Filament Structure for Burgers Equation</title><author>Neate, A. D. ; Truman, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-922b47c373d34c7176656bf45b7fb429c97d3b207b1c5ed64d20d5fad6fe9bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Burgers equation</topic><topic>Flow mapping</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Linear equations</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neate, A. D.</creatorcontrib><creatorcontrib>Truman, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neate, A. D.</au><au>Truman, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Properties of the Maxwell Set and a Vortex Filament Structure for Burgers Equation</atitle><jtitle>Letters in mathematical physics</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>80</volume><issue>1</issue><spage>19</spage><epage>35</epage><pages>19-35</pages><issn>0377-9017</issn><eissn>1573-0530</eissn><abstract>The inviscid limit of the stochastic Burgers equation is discussed in terms of the level surfaces of the minimising Hamilton–Jacobi function, the classical mechanical caustic and the Maxwell set and their algebraic pre-images under the classical mechanical flow map. We examine the geometry of the Maxwell set in terms of the behaviour of the pre-Maxwell set, the pre-caustic and the pre-level surfaces. In particular, contrary to the ideas of Helmholtz and Lord Kelvin, we prove that even if initially the fluid flow is irrotational, in the inviscid limit, associated with the advent of the Maxwell set a non-zero vorticity vector forms in the fluid with vortex lines on the Maxwell set. This suggests that in quite general circumstances for small viscosity there is a vortex filament structure near the Maxwell set for both deterministic and stochastic Burgers equations.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11005-007-0145-3</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-9017
ispartof Letters in mathematical physics, 2007-04, Vol.80 (1), p.19-35
issn 0377-9017
1573-0530
language eng
recordid cdi_proquest_journals_2665621527
source SpringerLink Journals
subjects Burgers equation
Flow mapping
Fluid dynamics
Fluid flow
Linear equations
Vortices
Vorticity
title Geometric Properties of the Maxwell Set and a Vortex Filament Structure for Burgers Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Properties%20of%20the%20Maxwell%20Set%20and%20a%20Vortex%20Filament%20Structure%20for%20Burgers%20Equation&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Neate,%20A.%20D.&rft.date=2007-04-01&rft.volume=80&rft.issue=1&rft.spage=19&rft.epage=35&rft.pages=19-35&rft.issn=0377-9017&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-007-0145-3&rft_dat=%3Cproquest_cross%3E2665621527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665621527&rft_id=info:pmid/&rfr_iscdi=true