Construction of heterocyclic rings from cyclopropenes

Heterocyclic rings are the fundamental building blocks of biological systems and have wide applications in synthetic chemistry and medicinal science. The development of novel synthetic methodology for heterocyclic skeletons from a variety of starting materials has made great progress in the past dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2022-05, Vol.2 (19), p.3847-3869
Hauptverfasser: Huo, Hengrui, Gong, Yuefa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heterocyclic rings are the fundamental building blocks of biological systems and have wide applications in synthetic chemistry and medicinal science. The development of novel synthetic methodology for heterocyclic skeletons from a variety of starting materials has made great progress in the past decades. Meanwhile, highly strained cyclopropenes as reactive reagents in organic transformations have drawn much attention from chemists. The rich chemical reactivity and reaction routes have been well investigated, and some review articles related to the reactivity of cyclopropenes and the construction of carbocycles and acyclic compounds have appeared in these years. Thus, this review mainly focuses on the progress in the construction of heterocyclic rings starting from various cyclopropenes including the reactions of commonly available stable cyclopropenes, in situ generated reactive cyclopropenes and cyclopropene precursors during this decade. Firstly, the transformations of common cyclopropenes into donor-type vinyl metal carbenes via transition metal induced ring opening, direct metalation of the C&z.dbd;C bond of metal complexes, and cycloaddition reactions with 1,3-dipoles are described. Next, the annulation reactions of reactive cyclopropenes generated in situ with donor-acceptor reagents, intramolecular nucleophilic addition, and the cycloaddition reactions with 1,3-dipoles are introduced. Then, the transformation of cyclopropene precursors such as alkyl 1-chloro- or 1-alkoxy-2-aroylcyclopropanecarboxylates into five-membered heteroaromatic compounds is also mentioned. In addition, a brief outlook of the opportunity and challenges in the field of bio-orthogonal reactions related to cyclopropenes is given. Direct construction of heterocyclic skeletons via the reactions of stable cyclopropenes, reactive cyclopropenes generated in situ and cyclopropene precursors is described with or without transition metal catalysts.
ISSN:1477-0520
1477-0539
DOI:10.1039/d1ob02450g