Nonlinear Light Amplification Governed by Structural Asymmetry

Maneuvering the structural asymmetry in metasurfaces plays an essential role in nonlinear nanophotonics, particularly in sub‐wavelength‐scale harmonic generation. Here, a highly efficient and reproducible plasmon‐enhanced second‐harmonic generation platform for exploring these quantitative contribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2022-05, Vol.10 (10), p.n/a
Hauptverfasser: Shen, Shaoxin, Gao, Renxian, Sun, Guoya, Yang, Zhilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Advanced optical materials
container_volume 10
creator Shen, Shaoxin
Gao, Renxian
Sun, Guoya
Yang, Zhilin
description Maneuvering the structural asymmetry in metasurfaces plays an essential role in nonlinear nanophotonics, particularly in sub‐wavelength‐scale harmonic generation. Here, a highly efficient and reproducible plasmon‐enhanced second‐harmonic generation platform for exploring these quantitative contributions of structural asymmetries to the amplification of inherently weak nonlinear responses is experimentally designed. It is discovered that such structural asymmetries can not only quantitatively alter the well‐characterized surface susceptibility, but also contribute to the spectral matching and the spatially symmetrical transition of optical resonant modes in plasmon‐enhanced nonlinear polarizations. Furthermore, this study strives to establish a theoretical model to quantify these structural asymmetry‐induced modifications, indicating the consistency with proposed experimental results. These studies may offer a strategy to the design of efficient nonlinear optical nanodevices with extending applications. Maneuvering the structural asymmetry in 3D cap‐shaped nanoparticles provides efficient ways to not only quantitatively alter microscopic effects of surface susceptibilities, but also facilitate the spectral matching and the spatially symmetrical transition of optical resonant modes in plasmon‐enhanced nonlinear polarizations. Under this circumstance, retrieved second‐harmonic generation emissions can be amplified by nearly two orders of magnitude and featured with well‐defined radiation patterns.
doi_str_mv 10.1002/adom.202102215
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2665446568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665446568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2475-99f2b85e3f773bbbdc6a60c2b59b286506ff48fe2ccfe3ff1c925a589b2d5ce43</originalsourceid><addsrcrecordid>eNqFkEFLxDAQRoMouKx79Vzw3DVJm7S5CGXVVajuQT2HJE00S9vUpFX67-1SUW-eZoZ53ww8AM4RXCMI8aWoXLPGECOIMSJHYIERIzGCGTr-05-CVQh7COE0JCzNFuDq0bW1bbXwUWlf3_qoaLraGqtEb10bbd2H9q2uIjlGT70fVD94UUdFGJtG9348AydG1EGvvusSvNzePG_u4nK3vd8UZaxwmpGYMYNlTnRisiyRUlaKCgoVloRJnFMCqTFpbjRWykyQQYphIkg-bSuidJoswcV8t_PufdCh53s3-HZ6yTGlJE0poflErWdKeReC14Z33jbCjxxBftDED5r4j6YpwObAp631-A_Ni-vdw2_2CwvJbAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665446568</pqid></control><display><type>article</type><title>Nonlinear Light Amplification Governed by Structural Asymmetry</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Shen, Shaoxin ; Gao, Renxian ; Sun, Guoya ; Yang, Zhilin</creator><creatorcontrib>Shen, Shaoxin ; Gao, Renxian ; Sun, Guoya ; Yang, Zhilin</creatorcontrib><description>Maneuvering the structural asymmetry in metasurfaces plays an essential role in nonlinear nanophotonics, particularly in sub‐wavelength‐scale harmonic generation. Here, a highly efficient and reproducible plasmon‐enhanced second‐harmonic generation platform for exploring these quantitative contributions of structural asymmetries to the amplification of inherently weak nonlinear responses is experimentally designed. It is discovered that such structural asymmetries can not only quantitatively alter the well‐characterized surface susceptibility, but also contribute to the spectral matching and the spatially symmetrical transition of optical resonant modes in plasmon‐enhanced nonlinear polarizations. Furthermore, this study strives to establish a theoretical model to quantify these structural asymmetry‐induced modifications, indicating the consistency with proposed experimental results. These studies may offer a strategy to the design of efficient nonlinear optical nanodevices with extending applications. Maneuvering the structural asymmetry in 3D cap‐shaped nanoparticles provides efficient ways to not only quantitatively alter microscopic effects of surface susceptibilities, but also facilitate the spectral matching and the spatially symmetrical transition of optical resonant modes in plasmon‐enhanced nonlinear polarizations. Under this circumstance, retrieved second‐harmonic generation emissions can be amplified by nearly two orders of magnitude and featured with well‐defined radiation patterns.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202102215</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Amplification ; Asymmetry ; Harmonic generations ; Materials science ; Nanotechnology devices ; nonlinear optical devices ; Nonlinear optics ; Nonlinear response ; Optics ; plasmonics ; polarization ; second‐harmonic generation ; structural asymmetry</subject><ispartof>Advanced optical materials, 2022-05, Vol.10 (10), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2475-99f2b85e3f773bbbdc6a60c2b59b286506ff48fe2ccfe3ff1c925a589b2d5ce43</citedby><cites>FETCH-LOGICAL-c2475-99f2b85e3f773bbbdc6a60c2b59b286506ff48fe2ccfe3ff1c925a589b2d5ce43</cites><orcidid>0000-0003-1674-439X ; 0000-0002-4799-1492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202102215$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202102215$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shen, Shaoxin</creatorcontrib><creatorcontrib>Gao, Renxian</creatorcontrib><creatorcontrib>Sun, Guoya</creatorcontrib><creatorcontrib>Yang, Zhilin</creatorcontrib><title>Nonlinear Light Amplification Governed by Structural Asymmetry</title><title>Advanced optical materials</title><description>Maneuvering the structural asymmetry in metasurfaces plays an essential role in nonlinear nanophotonics, particularly in sub‐wavelength‐scale harmonic generation. Here, a highly efficient and reproducible plasmon‐enhanced second‐harmonic generation platform for exploring these quantitative contributions of structural asymmetries to the amplification of inherently weak nonlinear responses is experimentally designed. It is discovered that such structural asymmetries can not only quantitatively alter the well‐characterized surface susceptibility, but also contribute to the spectral matching and the spatially symmetrical transition of optical resonant modes in plasmon‐enhanced nonlinear polarizations. Furthermore, this study strives to establish a theoretical model to quantify these structural asymmetry‐induced modifications, indicating the consistency with proposed experimental results. These studies may offer a strategy to the design of efficient nonlinear optical nanodevices with extending applications. Maneuvering the structural asymmetry in 3D cap‐shaped nanoparticles provides efficient ways to not only quantitatively alter microscopic effects of surface susceptibilities, but also facilitate the spectral matching and the spatially symmetrical transition of optical resonant modes in plasmon‐enhanced nonlinear polarizations. Under this circumstance, retrieved second‐harmonic generation emissions can be amplified by nearly two orders of magnitude and featured with well‐defined radiation patterns.</description><subject>Amplification</subject><subject>Asymmetry</subject><subject>Harmonic generations</subject><subject>Materials science</subject><subject>Nanotechnology devices</subject><subject>nonlinear optical devices</subject><subject>Nonlinear optics</subject><subject>Nonlinear response</subject><subject>Optics</subject><subject>plasmonics</subject><subject>polarization</subject><subject>second‐harmonic generation</subject><subject>structural asymmetry</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQRoMouKx79Vzw3DVJm7S5CGXVVajuQT2HJE00S9vUpFX67-1SUW-eZoZ53ww8AM4RXCMI8aWoXLPGECOIMSJHYIERIzGCGTr-05-CVQh7COE0JCzNFuDq0bW1bbXwUWlf3_qoaLraGqtEb10bbd2H9q2uIjlGT70fVD94UUdFGJtG9348AydG1EGvvusSvNzePG_u4nK3vd8UZaxwmpGYMYNlTnRisiyRUlaKCgoVloRJnFMCqTFpbjRWykyQQYphIkg-bSuidJoswcV8t_PufdCh53s3-HZ6yTGlJE0poflErWdKeReC14Z33jbCjxxBftDED5r4j6YpwObAp631-A_Ni-vdw2_2CwvJbAo</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Shen, Shaoxin</creator><creator>Gao, Renxian</creator><creator>Sun, Guoya</creator><creator>Yang, Zhilin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1674-439X</orcidid><orcidid>https://orcid.org/0000-0002-4799-1492</orcidid></search><sort><creationdate>20220501</creationdate><title>Nonlinear Light Amplification Governed by Structural Asymmetry</title><author>Shen, Shaoxin ; Gao, Renxian ; Sun, Guoya ; Yang, Zhilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2475-99f2b85e3f773bbbdc6a60c2b59b286506ff48fe2ccfe3ff1c925a589b2d5ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplification</topic><topic>Asymmetry</topic><topic>Harmonic generations</topic><topic>Materials science</topic><topic>Nanotechnology devices</topic><topic>nonlinear optical devices</topic><topic>Nonlinear optics</topic><topic>Nonlinear response</topic><topic>Optics</topic><topic>plasmonics</topic><topic>polarization</topic><topic>second‐harmonic generation</topic><topic>structural asymmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Shen, Shaoxin</creatorcontrib><creatorcontrib>Gao, Renxian</creatorcontrib><creatorcontrib>Sun, Guoya</creatorcontrib><creatorcontrib>Yang, Zhilin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Shaoxin</au><au>Gao, Renxian</au><au>Sun, Guoya</au><au>Yang, Zhilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Light Amplification Governed by Structural Asymmetry</atitle><jtitle>Advanced optical materials</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>10</volume><issue>10</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Maneuvering the structural asymmetry in metasurfaces plays an essential role in nonlinear nanophotonics, particularly in sub‐wavelength‐scale harmonic generation. Here, a highly efficient and reproducible plasmon‐enhanced second‐harmonic generation platform for exploring these quantitative contributions of structural asymmetries to the amplification of inherently weak nonlinear responses is experimentally designed. It is discovered that such structural asymmetries can not only quantitatively alter the well‐characterized surface susceptibility, but also contribute to the spectral matching and the spatially symmetrical transition of optical resonant modes in plasmon‐enhanced nonlinear polarizations. Furthermore, this study strives to establish a theoretical model to quantify these structural asymmetry‐induced modifications, indicating the consistency with proposed experimental results. These studies may offer a strategy to the design of efficient nonlinear optical nanodevices with extending applications. Maneuvering the structural asymmetry in 3D cap‐shaped nanoparticles provides efficient ways to not only quantitatively alter microscopic effects of surface susceptibilities, but also facilitate the spectral matching and the spatially symmetrical transition of optical resonant modes in plasmon‐enhanced nonlinear polarizations. Under this circumstance, retrieved second‐harmonic generation emissions can be amplified by nearly two orders of magnitude and featured with well‐defined radiation patterns.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202102215</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1674-439X</orcidid><orcidid>https://orcid.org/0000-0002-4799-1492</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2022-05, Vol.10 (10), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2665446568
source Wiley Online Library - AutoHoldings Journals
subjects Amplification
Asymmetry
Harmonic generations
Materials science
Nanotechnology devices
nonlinear optical devices
Nonlinear optics
Nonlinear response
Optics
plasmonics
polarization
second‐harmonic generation
structural asymmetry
title Nonlinear Light Amplification Governed by Structural Asymmetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Light%20Amplification%20Governed%20by%20Structural%20Asymmetry&rft.jtitle=Advanced%20optical%20materials&rft.au=Shen,%20Shaoxin&rft.date=2022-05-01&rft.volume=10&rft.issue=10&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202102215&rft_dat=%3Cproquest_cross%3E2665446568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665446568&rft_id=info:pmid/&rfr_iscdi=true