Towards artificial intelligence at scale in the chemical industry

In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2022-06, Vol.68 (6), p.n/a
Hauptverfasser: Chiang, Leo H., Braun, Birgit, Wang, Zhenyu, Castillo, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title AIChE journal
container_volume 68
creator Chiang, Leo H.
Braun, Birgit
Wang, Zhenyu
Castillo, Ivan
description In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision‐making is shown. Then state‐of‐the‐art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI‐ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.
doi_str_mv 10.1002/aic.17644
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2665414078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665414078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-e21642156c6c533a52ebee5053c3b5f7c7dbf484ea888431f849f8640d4b61483</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_8GCJw_bJtnJR4-l-FEoeKnnkM1ObMq2W5Mtpf_e1PXqaZiXZ2aYh5BHRieMUj61wU2YkgBXZMQEqFLMqLgmI0opK3PAbsldStvccaX5iMzX3cnGJhU29sEHF2xbhH2PbRu-cO-wsH2RnG0xp0W_wcJtcBfcL9UcUx_P9-TG2zbhw18dk8_Xl_XivVx9vC0X81Xp-ExBiZxJ4ExIJ52oKis41oiCispVtfDKqab2oAGt1hoq5jXMvJZAG6glA12NydOw9xC77yOm3my7Y9znk4ZLmT8Dqi7U80C52KUU0ZtDDDsbz4ZRczFksiHzayiz04E9hRbP_4NmvlwMEz-QaWYZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665414078</pqid></control><display><type>article</type><title>Towards artificial intelligence at scale in the chemical industry</title><source>Wiley Online Library All Journals</source><creator>Chiang, Leo H. ; Braun, Birgit ; Wang, Zhenyu ; Castillo, Ivan</creator><creatorcontrib>Chiang, Leo H. ; Braun, Birgit ; Wang, Zhenyu ; Castillo, Ivan</creatorcontrib><description>In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision‐making is shown. Then state‐of‐the‐art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI‐ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.17644</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Artificial intelligence ; Chemical industry ; Critical components ; Decision making ; fault diagnosis ; industrial applications ; Life cycles ; Machine learning ; Optimization ; Reliability engineering ; Supply chains</subject><ispartof>AIChE journal, 2022-06, Vol.68 (6), p.n/a</ispartof><rights>2022 American Institute of Chemical Engineers.</rights><rights>2022 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-e21642156c6c533a52ebee5053c3b5f7c7dbf484ea888431f849f8640d4b61483</citedby><cites>FETCH-LOGICAL-c2974-e21642156c6c533a52ebee5053c3b5f7c7dbf484ea888431f849f8640d4b61483</cites><orcidid>0000-0003-0729-6273 ; 0000-0003-3624-6080 ; 0000-0002-7802-5596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.17644$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.17644$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chiang, Leo H.</creatorcontrib><creatorcontrib>Braun, Birgit</creatorcontrib><creatorcontrib>Wang, Zhenyu</creatorcontrib><creatorcontrib>Castillo, Ivan</creatorcontrib><title>Towards artificial intelligence at scale in the chemical industry</title><title>AIChE journal</title><description>In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision‐making is shown. Then state‐of‐the‐art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI‐ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.</description><subject>Artificial intelligence</subject><subject>Chemical industry</subject><subject>Critical components</subject><subject>Decision making</subject><subject>fault diagnosis</subject><subject>industrial applications</subject><subject>Life cycles</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Reliability engineering</subject><subject>Supply chains</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_8GCJw_bJtnJR4-l-FEoeKnnkM1ObMq2W5Mtpf_e1PXqaZiXZ2aYh5BHRieMUj61wU2YkgBXZMQEqFLMqLgmI0opK3PAbsldStvccaX5iMzX3cnGJhU29sEHF2xbhH2PbRu-cO-wsH2RnG0xp0W_wcJtcBfcL9UcUx_P9-TG2zbhw18dk8_Xl_XivVx9vC0X81Xp-ExBiZxJ4ExIJ52oKis41oiCispVtfDKqab2oAGt1hoq5jXMvJZAG6glA12NydOw9xC77yOm3my7Y9znk4ZLmT8Dqi7U80C52KUU0ZtDDDsbz4ZRczFksiHzayiz04E9hRbP_4NmvlwMEz-QaWYZ</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Chiang, Leo H.</creator><creator>Braun, Birgit</creator><creator>Wang, Zhenyu</creator><creator>Castillo, Ivan</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0729-6273</orcidid><orcidid>https://orcid.org/0000-0003-3624-6080</orcidid><orcidid>https://orcid.org/0000-0002-7802-5596</orcidid></search><sort><creationdate>202206</creationdate><title>Towards artificial intelligence at scale in the chemical industry</title><author>Chiang, Leo H. ; Braun, Birgit ; Wang, Zhenyu ; Castillo, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-e21642156c6c533a52ebee5053c3b5f7c7dbf484ea888431f849f8640d4b61483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Chemical industry</topic><topic>Critical components</topic><topic>Decision making</topic><topic>fault diagnosis</topic><topic>industrial applications</topic><topic>Life cycles</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Reliability engineering</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Leo H.</creatorcontrib><creatorcontrib>Braun, Birgit</creatorcontrib><creatorcontrib>Wang, Zhenyu</creatorcontrib><creatorcontrib>Castillo, Ivan</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang, Leo H.</au><au>Braun, Birgit</au><au>Wang, Zhenyu</au><au>Castillo, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards artificial intelligence at scale in the chemical industry</atitle><jtitle>AIChE journal</jtitle><date>2022-06</date><risdate>2022</risdate><volume>68</volume><issue>6</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision‐making is shown. Then state‐of‐the‐art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI‐ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.17644</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0729-6273</orcidid><orcidid>https://orcid.org/0000-0003-3624-6080</orcidid><orcidid>https://orcid.org/0000-0002-7802-5596</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2022-06, Vol.68 (6), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2665414078
source Wiley Online Library All Journals
subjects Artificial intelligence
Chemical industry
Critical components
Decision making
fault diagnosis
industrial applications
Life cycles
Machine learning
Optimization
Reliability engineering
Supply chains
title Towards artificial intelligence at scale in the chemical industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20artificial%20intelligence%20at%20scale%20in%20the%20chemical%20industry&rft.jtitle=AIChE%20journal&rft.au=Chiang,%20Leo%20H.&rft.date=2022-06&rft.volume=68&rft.issue=6&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.17644&rft_dat=%3Cproquest_cross%3E2665414078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665414078&rft_id=info:pmid/&rfr_iscdi=true