Towards artificial intelligence at scale in the chemical industry
In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry u...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2022-06, Vol.68 (6), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | AIChE journal |
container_volume | 68 |
creator | Chiang, Leo H. Braun, Birgit Wang, Zhenyu Castillo, Ivan |
description | In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision‐making is shown. Then state‐of‐the‐art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI‐ready culture, model life cycle management, and renewed role of humans in chemical manufacturing. |
doi_str_mv | 10.1002/aic.17644 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2665414078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665414078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-e21642156c6c533a52ebee5053c3b5f7c7dbf484ea888431f849f8640d4b61483</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_8GCJw_bJtnJR4-l-FEoeKnnkM1ObMq2W5Mtpf_e1PXqaZiXZ2aYh5BHRieMUj61wU2YkgBXZMQEqFLMqLgmI0opK3PAbsldStvccaX5iMzX3cnGJhU29sEHF2xbhH2PbRu-cO-wsH2RnG0xp0W_wcJtcBfcL9UcUx_P9-TG2zbhw18dk8_Xl_XivVx9vC0X81Xp-ExBiZxJ4ExIJ52oKis41oiCispVtfDKqab2oAGt1hoq5jXMvJZAG6glA12NydOw9xC77yOm3my7Y9znk4ZLmT8Dqi7U80C52KUU0ZtDDDsbz4ZRczFksiHzayiz04E9hRbP_4NmvlwMEz-QaWYZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665414078</pqid></control><display><type>article</type><title>Towards artificial intelligence at scale in the chemical industry</title><source>Wiley Online Library All Journals</source><creator>Chiang, Leo H. ; Braun, Birgit ; Wang, Zhenyu ; Castillo, Ivan</creator><creatorcontrib>Chiang, Leo H. ; Braun, Birgit ; Wang, Zhenyu ; Castillo, Ivan</creatorcontrib><description>In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision‐making is shown. Then state‐of‐the‐art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI‐ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.17644</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Artificial intelligence ; Chemical industry ; Critical components ; Decision making ; fault diagnosis ; industrial applications ; Life cycles ; Machine learning ; Optimization ; Reliability engineering ; Supply chains</subject><ispartof>AIChE journal, 2022-06, Vol.68 (6), p.n/a</ispartof><rights>2022 American Institute of Chemical Engineers.</rights><rights>2022 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-e21642156c6c533a52ebee5053c3b5f7c7dbf484ea888431f849f8640d4b61483</citedby><cites>FETCH-LOGICAL-c2974-e21642156c6c533a52ebee5053c3b5f7c7dbf484ea888431f849f8640d4b61483</cites><orcidid>0000-0003-0729-6273 ; 0000-0003-3624-6080 ; 0000-0002-7802-5596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.17644$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.17644$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chiang, Leo H.</creatorcontrib><creatorcontrib>Braun, Birgit</creatorcontrib><creatorcontrib>Wang, Zhenyu</creatorcontrib><creatorcontrib>Castillo, Ivan</creatorcontrib><title>Towards artificial intelligence at scale in the chemical industry</title><title>AIChE journal</title><description>In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision‐making is shown. Then state‐of‐the‐art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI‐ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.</description><subject>Artificial intelligence</subject><subject>Chemical industry</subject><subject>Critical components</subject><subject>Decision making</subject><subject>fault diagnosis</subject><subject>industrial applications</subject><subject>Life cycles</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Reliability engineering</subject><subject>Supply chains</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_8GCJw_bJtnJR4-l-FEoeKnnkM1ObMq2W5Mtpf_e1PXqaZiXZ2aYh5BHRieMUj61wU2YkgBXZMQEqFLMqLgmI0opK3PAbsldStvccaX5iMzX3cnGJhU29sEHF2xbhH2PbRu-cO-wsH2RnG0xp0W_wcJtcBfcL9UcUx_P9-TG2zbhw18dk8_Xl_XivVx9vC0X81Xp-ExBiZxJ4ExIJ52oKis41oiCispVtfDKqab2oAGt1hoq5jXMvJZAG6glA12NydOw9xC77yOm3my7Y9znk4ZLmT8Dqi7U80C52KUU0ZtDDDsbz4ZRczFksiHzayiz04E9hRbP_4NmvlwMEz-QaWYZ</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Chiang, Leo H.</creator><creator>Braun, Birgit</creator><creator>Wang, Zhenyu</creator><creator>Castillo, Ivan</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0729-6273</orcidid><orcidid>https://orcid.org/0000-0003-3624-6080</orcidid><orcidid>https://orcid.org/0000-0002-7802-5596</orcidid></search><sort><creationdate>202206</creationdate><title>Towards artificial intelligence at scale in the chemical industry</title><author>Chiang, Leo H. ; Braun, Birgit ; Wang, Zhenyu ; Castillo, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-e21642156c6c533a52ebee5053c3b5f7c7dbf484ea888431f849f8640d4b61483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Chemical industry</topic><topic>Critical components</topic><topic>Decision making</topic><topic>fault diagnosis</topic><topic>industrial applications</topic><topic>Life cycles</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Reliability engineering</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Leo H.</creatorcontrib><creatorcontrib>Braun, Birgit</creatorcontrib><creatorcontrib>Wang, Zhenyu</creatorcontrib><creatorcontrib>Castillo, Ivan</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang, Leo H.</au><au>Braun, Birgit</au><au>Wang, Zhenyu</au><au>Castillo, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards artificial intelligence at scale in the chemical industry</atitle><jtitle>AIChE journal</jtitle><date>2022-06</date><risdate>2022</risdate><volume>68</volume><issue>6</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision‐making is shown. Then state‐of‐the‐art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI‐ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.17644</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0729-6273</orcidid><orcidid>https://orcid.org/0000-0003-3624-6080</orcidid><orcidid>https://orcid.org/0000-0002-7802-5596</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2022-06, Vol.68 (6), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2665414078 |
source | Wiley Online Library All Journals |
subjects | Artificial intelligence Chemical industry Critical components Decision making fault diagnosis industrial applications Life cycles Machine learning Optimization Reliability engineering Supply chains |
title | Towards artificial intelligence at scale in the chemical industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20artificial%20intelligence%20at%20scale%20in%20the%20chemical%20industry&rft.jtitle=AIChE%20journal&rft.au=Chiang,%20Leo%20H.&rft.date=2022-06&rft.volume=68&rft.issue=6&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.17644&rft_dat=%3Cproquest_cross%3E2665414078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665414078&rft_id=info:pmid/&rfr_iscdi=true |