Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression

Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2022-05, Vol.17 (5), p.1765-1784
Hauptverfasser: Feng, Peng, Zhao, Jiachen, Dai, Feng, Wei, Mingdong, Liu, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1784
container_issue 5
container_start_page 1765
container_title Acta geotechnica
container_volume 17
creator Feng, Peng
Zhao, Jiachen
Dai, Feng
Wei, Mingdong
Liu, Bo
description Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study experimentally investigates the mechanical properties of conjugate-flawed sandstone specimens under coupled static–dynamic compression, thereby providing insight into how conjugate fractures interact to produce tracing tensional joints. Results indicate that the coupled compressive strength and the dynamic elastic modulus of conjugate-flawed rock specimens show remarkable loading rate dependence. For a fixed strain rate, the specimen with a static pre-stress equal to 60% of its uniaxial compressive strength has the highest coupled strength. Besides, both higher static pre-stress and strain rate can induce smaller mean fragment size and greater fractal dimension of the specimen, corresponding to a more uniform distribution of the broken fragments with smaller sizes. When the static pre-stress is lower than 80%UCS, the flawed specimen under a higher strain rate is characterized by higher absorbed energy. However, when the pre-stress equals 80%UCS, the value of the energy absorbed by the specimen in the dynamic loading process is negative due to the release of the preexisting considerable elastic strain energy input from the static pre-loading. As for the failure modes, cracks always penetrate the preexisting ipsilateral flaw tips to form anti-wing cracks. Under dynamic loading, the conjugate-flawed specimen generally shows tensile failure at a low strain rate, while the shear failure dominates at a high strain rate. In addition, based on progressive failure processes of the conjugate-flawed rock specimens, the evolution of tracing tensional joints in the field is discussed.
doi_str_mv 10.1007/s11440-021-01322-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2665404511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665404511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-7c82bec4696a3a94510ba16405e5a0e0e2118b99e4fe4fa4a543c7fc4760fe643</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWBv8F6dZooo_qYgNrM3EnbQJaRzsBNQdd-CGnARDEOyQRpoZzXtvpI-QY85OOWPZWeBcKUaZ4JRxKQTVO2TCZ5pTzqXc_Z1Fuk8OQqgZ01IoPSGPt2jX0FYWmqTANbxUzofElYl1bT2soEdaNvCKy8Q7-xSSMBQ12j7uvYuaoWviGHroK_vx9r7ctrCpbDxsOo8hVK49JHslNAGPfvqUPFxe3M-v6eLu6mZ-vqAglehpZmeiQKt0rkFCrlLOCuBasRRTYMhQcD4r8hxVGQsUpErarLQq06xEreSUnIy5nXfPA4be1G7wbXxphNapYjGSR5UYVda7EDyWpvPVBvzWcGa-SJqRpIkkzTdJo6NJjqYQxe0K_V_0P65PaPZ4ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665404511</pqid></control><display><type>article</type><title>Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression</title><source>Springer Online Journals Complete</source><creator>Feng, Peng ; Zhao, Jiachen ; Dai, Feng ; Wei, Mingdong ; Liu, Bo</creator><creatorcontrib>Feng, Peng ; Zhao, Jiachen ; Dai, Feng ; Wei, Mingdong ; Liu, Bo</creatorcontrib><description>Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study experimentally investigates the mechanical properties of conjugate-flawed sandstone specimens under coupled static–dynamic compression, thereby providing insight into how conjugate fractures interact to produce tracing tensional joints. Results indicate that the coupled compressive strength and the dynamic elastic modulus of conjugate-flawed rock specimens show remarkable loading rate dependence. For a fixed strain rate, the specimen with a static pre-stress equal to 60% of its uniaxial compressive strength has the highest coupled strength. Besides, both higher static pre-stress and strain rate can induce smaller mean fragment size and greater fractal dimension of the specimen, corresponding to a more uniform distribution of the broken fragments with smaller sizes. When the static pre-stress is lower than 80%UCS, the flawed specimen under a higher strain rate is characterized by higher absorbed energy. However, when the pre-stress equals 80%UCS, the value of the energy absorbed by the specimen in the dynamic loading process is negative due to the release of the preexisting considerable elastic strain energy input from the static pre-loading. As for the failure modes, cracks always penetrate the preexisting ipsilateral flaw tips to form anti-wing cracks. Under dynamic loading, the conjugate-flawed specimen generally shows tensile failure at a low strain rate, while the shear failure dominates at a high strain rate. In addition, based on progressive failure processes of the conjugate-flawed rock specimens, the evolution of tracing tensional joints in the field is discussed.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-021-01322-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Civil engineering ; Complex Fluids and Microfluidics ; Compression ; Compressive strength ; Conjugates ; Cracks ; Deformation ; Dimensions ; Dynamic loads ; Energy ; Engineering ; Failure modes ; Flawed specimens ; Foundations ; Fractal geometry ; Fractures ; Geoengineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; High strain rate ; Hydraulics ; Investigations ; Joints (timber) ; Laboratories ; Load distribution ; Loading rate ; Mechanical loading ; Mechanical properties ; Research Paper ; Rock masses ; Rocks ; Sandstone ; Sedimentary rocks ; Soft and Granular Matter ; Soil Science &amp; Conservation ; Solid Mechanics ; Stability analysis ; Storage modulus ; Strain ; Tracing</subject><ispartof>Acta geotechnica, 2022-05, Vol.17 (5), p.1765-1784</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-7c82bec4696a3a94510ba16405e5a0e0e2118b99e4fe4fa4a543c7fc4760fe643</citedby><cites>FETCH-LOGICAL-a342t-7c82bec4696a3a94510ba16405e5a0e0e2118b99e4fe4fa4a543c7fc4760fe643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-021-01322-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-021-01322-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Feng, Peng</creatorcontrib><creatorcontrib>Zhao, Jiachen</creatorcontrib><creatorcontrib>Dai, Feng</creatorcontrib><creatorcontrib>Wei, Mingdong</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><title>Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study experimentally investigates the mechanical properties of conjugate-flawed sandstone specimens under coupled static–dynamic compression, thereby providing insight into how conjugate fractures interact to produce tracing tensional joints. Results indicate that the coupled compressive strength and the dynamic elastic modulus of conjugate-flawed rock specimens show remarkable loading rate dependence. For a fixed strain rate, the specimen with a static pre-stress equal to 60% of its uniaxial compressive strength has the highest coupled strength. Besides, both higher static pre-stress and strain rate can induce smaller mean fragment size and greater fractal dimension of the specimen, corresponding to a more uniform distribution of the broken fragments with smaller sizes. When the static pre-stress is lower than 80%UCS, the flawed specimen under a higher strain rate is characterized by higher absorbed energy. However, when the pre-stress equals 80%UCS, the value of the energy absorbed by the specimen in the dynamic loading process is negative due to the release of the preexisting considerable elastic strain energy input from the static pre-loading. As for the failure modes, cracks always penetrate the preexisting ipsilateral flaw tips to form anti-wing cracks. Under dynamic loading, the conjugate-flawed specimen generally shows tensile failure at a low strain rate, while the shear failure dominates at a high strain rate. In addition, based on progressive failure processes of the conjugate-flawed rock specimens, the evolution of tracing tensional joints in the field is discussed.</description><subject>Civil engineering</subject><subject>Complex Fluids and Microfluidics</subject><subject>Compression</subject><subject>Compressive strength</subject><subject>Conjugates</subject><subject>Cracks</subject><subject>Deformation</subject><subject>Dimensions</subject><subject>Dynamic loads</subject><subject>Energy</subject><subject>Engineering</subject><subject>Failure modes</subject><subject>Flawed specimens</subject><subject>Foundations</subject><subject>Fractal geometry</subject><subject>Fractures</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>High strain rate</subject><subject>Hydraulics</subject><subject>Investigations</subject><subject>Joints (timber)</subject><subject>Laboratories</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Mechanical loading</subject><subject>Mechanical properties</subject><subject>Research Paper</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Sedimentary rocks</subject><subject>Soft and Granular Matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Solid Mechanics</subject><subject>Stability analysis</subject><subject>Storage modulus</subject><subject>Strain</subject><subject>Tracing</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWBv8F6dZooo_qYgNrM3EnbQJaRzsBNQdd-CGnARDEOyQRpoZzXtvpI-QY85OOWPZWeBcKUaZ4JRxKQTVO2TCZ5pTzqXc_Z1Fuk8OQqgZ01IoPSGPt2jX0FYWmqTANbxUzofElYl1bT2soEdaNvCKy8Q7-xSSMBQ12j7uvYuaoWviGHroK_vx9r7ctrCpbDxsOo8hVK49JHslNAGPfvqUPFxe3M-v6eLu6mZ-vqAglehpZmeiQKt0rkFCrlLOCuBasRRTYMhQcD4r8hxVGQsUpErarLQq06xEreSUnIy5nXfPA4be1G7wbXxphNapYjGSR5UYVda7EDyWpvPVBvzWcGa-SJqRpIkkzTdJo6NJjqYQxe0K_V_0P65PaPZ4ZQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Feng, Peng</creator><creator>Zhao, Jiachen</creator><creator>Dai, Feng</creator><creator>Wei, Mingdong</creator><creator>Liu, Bo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220501</creationdate><title>Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression</title><author>Feng, Peng ; Zhao, Jiachen ; Dai, Feng ; Wei, Mingdong ; Liu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-7c82bec4696a3a94510ba16405e5a0e0e2118b99e4fe4fa4a543c7fc4760fe643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Civil engineering</topic><topic>Complex Fluids and Microfluidics</topic><topic>Compression</topic><topic>Compressive strength</topic><topic>Conjugates</topic><topic>Cracks</topic><topic>Deformation</topic><topic>Dimensions</topic><topic>Dynamic loads</topic><topic>Energy</topic><topic>Engineering</topic><topic>Failure modes</topic><topic>Flawed specimens</topic><topic>Foundations</topic><topic>Fractal geometry</topic><topic>Fractures</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>High strain rate</topic><topic>Hydraulics</topic><topic>Investigations</topic><topic>Joints (timber)</topic><topic>Laboratories</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Mechanical loading</topic><topic>Mechanical properties</topic><topic>Research Paper</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Sedimentary rocks</topic><topic>Soft and Granular Matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Solid Mechanics</topic><topic>Stability analysis</topic><topic>Storage modulus</topic><topic>Strain</topic><topic>Tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Peng</creatorcontrib><creatorcontrib>Zhao, Jiachen</creatorcontrib><creatorcontrib>Dai, Feng</creatorcontrib><creatorcontrib>Wei, Mingdong</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Peng</au><au>Zhao, Jiachen</au><au>Dai, Feng</au><au>Wei, Mingdong</au><au>Liu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>1765</spage><epage>1784</epage><pages>1765-1784</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study experimentally investigates the mechanical properties of conjugate-flawed sandstone specimens under coupled static–dynamic compression, thereby providing insight into how conjugate fractures interact to produce tracing tensional joints. Results indicate that the coupled compressive strength and the dynamic elastic modulus of conjugate-flawed rock specimens show remarkable loading rate dependence. For a fixed strain rate, the specimen with a static pre-stress equal to 60% of its uniaxial compressive strength has the highest coupled strength. Besides, both higher static pre-stress and strain rate can induce smaller mean fragment size and greater fractal dimension of the specimen, corresponding to a more uniform distribution of the broken fragments with smaller sizes. When the static pre-stress is lower than 80%UCS, the flawed specimen under a higher strain rate is characterized by higher absorbed energy. However, when the pre-stress equals 80%UCS, the value of the energy absorbed by the specimen in the dynamic loading process is negative due to the release of the preexisting considerable elastic strain energy input from the static pre-loading. As for the failure modes, cracks always penetrate the preexisting ipsilateral flaw tips to form anti-wing cracks. Under dynamic loading, the conjugate-flawed specimen generally shows tensile failure at a low strain rate, while the shear failure dominates at a high strain rate. In addition, based on progressive failure processes of the conjugate-flawed rock specimens, the evolution of tracing tensional joints in the field is discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-021-01322-6</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2022-05, Vol.17 (5), p.1765-1784
issn 1861-1125
1861-1133
language eng
recordid cdi_proquest_journals_2665404511
source Springer Online Journals Complete
subjects Civil engineering
Complex Fluids and Microfluidics
Compression
Compressive strength
Conjugates
Cracks
Deformation
Dimensions
Dynamic loads
Energy
Engineering
Failure modes
Flawed specimens
Foundations
Fractal geometry
Fractures
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
High strain rate
Hydraulics
Investigations
Joints (timber)
Laboratories
Load distribution
Loading rate
Mechanical loading
Mechanical properties
Research Paper
Rock masses
Rocks
Sandstone
Sedimentary rocks
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
Stability analysis
Storage modulus
Strain
Tracing
title Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20behaviors%20of%20conjugate-flawed%20rocks%20subjected%20to%20coupled%20static%E2%80%93dynamic%20compression&rft.jtitle=Acta%20geotechnica&rft.au=Feng,%20Peng&rft.date=2022-05-01&rft.volume=17&rft.issue=5&rft.spage=1765&rft.epage=1784&rft.pages=1765-1784&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-021-01322-6&rft_dat=%3Cproquest_cross%3E2665404511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665404511&rft_id=info:pmid/&rfr_iscdi=true