Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression
Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study e...
Gespeichert in:
Veröffentlicht in: | Acta geotechnica 2022-05, Vol.17 (5), p.1765-1784 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1784 |
---|---|
container_issue | 5 |
container_start_page | 1765 |
container_title | Acta geotechnica |
container_volume | 17 |
creator | Feng, Peng Zhao, Jiachen Dai, Feng Wei, Mingdong Liu, Bo |
description | Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study experimentally investigates the mechanical properties of conjugate-flawed sandstone specimens under coupled static–dynamic compression, thereby providing insight into how conjugate fractures interact to produce tracing tensional joints. Results indicate that the coupled compressive strength and the dynamic elastic modulus of conjugate-flawed rock specimens show remarkable loading rate dependence. For a fixed strain rate, the specimen with a static pre-stress equal to 60% of its uniaxial compressive strength has the highest coupled strength. Besides, both higher static pre-stress and strain rate can induce smaller mean fragment size and greater fractal dimension of the specimen, corresponding to a more uniform distribution of the broken fragments with smaller sizes. When the static pre-stress is lower than 80%UCS, the flawed specimen under a higher strain rate is characterized by higher absorbed energy. However, when the pre-stress equals 80%UCS, the value of the energy absorbed by the specimen in the dynamic loading process is negative due to the release of the preexisting considerable elastic strain energy input from the static pre-loading. As for the failure modes, cracks always penetrate the preexisting ipsilateral flaw tips to form anti-wing cracks. Under dynamic loading, the conjugate-flawed specimen generally shows tensile failure at a low strain rate, while the shear failure dominates at a high strain rate. In addition, based on progressive failure processes of the conjugate-flawed rock specimens, the evolution of tracing tensional joints in the field is discussed. |
doi_str_mv | 10.1007/s11440-021-01322-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2665404511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665404511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-7c82bec4696a3a94510ba16405e5a0e0e2118b99e4fe4fa4a543c7fc4760fe643</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWBv8F6dZooo_qYgNrM3EnbQJaRzsBNQdd-CGnARDEOyQRpoZzXtvpI-QY85OOWPZWeBcKUaZ4JRxKQTVO2TCZ5pTzqXc_Z1Fuk8OQqgZ01IoPSGPt2jX0FYWmqTANbxUzofElYl1bT2soEdaNvCKy8Q7-xSSMBQ12j7uvYuaoWviGHroK_vx9r7ctrCpbDxsOo8hVK49JHslNAGPfvqUPFxe3M-v6eLu6mZ-vqAglehpZmeiQKt0rkFCrlLOCuBasRRTYMhQcD4r8hxVGQsUpErarLQq06xEreSUnIy5nXfPA4be1G7wbXxphNapYjGSR5UYVda7EDyWpvPVBvzWcGa-SJqRpIkkzTdJo6NJjqYQxe0K_V_0P65PaPZ4ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665404511</pqid></control><display><type>article</type><title>Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression</title><source>Springer Online Journals Complete</source><creator>Feng, Peng ; Zhao, Jiachen ; Dai, Feng ; Wei, Mingdong ; Liu, Bo</creator><creatorcontrib>Feng, Peng ; Zhao, Jiachen ; Dai, Feng ; Wei, Mingdong ; Liu, Bo</creatorcontrib><description>Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study experimentally investigates the mechanical properties of conjugate-flawed sandstone specimens under coupled static–dynamic compression, thereby providing insight into how conjugate fractures interact to produce tracing tensional joints. Results indicate that the coupled compressive strength and the dynamic elastic modulus of conjugate-flawed rock specimens show remarkable loading rate dependence. For a fixed strain rate, the specimen with a static pre-stress equal to 60% of its uniaxial compressive strength has the highest coupled strength. Besides, both higher static pre-stress and strain rate can induce smaller mean fragment size and greater fractal dimension of the specimen, corresponding to a more uniform distribution of the broken fragments with smaller sizes. When the static pre-stress is lower than 80%UCS, the flawed specimen under a higher strain rate is characterized by higher absorbed energy. However, when the pre-stress equals 80%UCS, the value of the energy absorbed by the specimen in the dynamic loading process is negative due to the release of the preexisting considerable elastic strain energy input from the static pre-loading. As for the failure modes, cracks always penetrate the preexisting ipsilateral flaw tips to form anti-wing cracks. Under dynamic loading, the conjugate-flawed specimen generally shows tensile failure at a low strain rate, while the shear failure dominates at a high strain rate. In addition, based on progressive failure processes of the conjugate-flawed rock specimens, the evolution of tracing tensional joints in the field is discussed.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-021-01322-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Civil engineering ; Complex Fluids and Microfluidics ; Compression ; Compressive strength ; Conjugates ; Cracks ; Deformation ; Dimensions ; Dynamic loads ; Energy ; Engineering ; Failure modes ; Flawed specimens ; Foundations ; Fractal geometry ; Fractures ; Geoengineering ; Geotechnical Engineering & Applied Earth Sciences ; High strain rate ; Hydraulics ; Investigations ; Joints (timber) ; Laboratories ; Load distribution ; Loading rate ; Mechanical loading ; Mechanical properties ; Research Paper ; Rock masses ; Rocks ; Sandstone ; Sedimentary rocks ; Soft and Granular Matter ; Soil Science & Conservation ; Solid Mechanics ; Stability analysis ; Storage modulus ; Strain ; Tracing</subject><ispartof>Acta geotechnica, 2022-05, Vol.17 (5), p.1765-1784</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-7c82bec4696a3a94510ba16405e5a0e0e2118b99e4fe4fa4a543c7fc4760fe643</citedby><cites>FETCH-LOGICAL-a342t-7c82bec4696a3a94510ba16405e5a0e0e2118b99e4fe4fa4a543c7fc4760fe643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-021-01322-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-021-01322-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Feng, Peng</creatorcontrib><creatorcontrib>Zhao, Jiachen</creatorcontrib><creatorcontrib>Dai, Feng</creatorcontrib><creatorcontrib>Wei, Mingdong</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><title>Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study experimentally investigates the mechanical properties of conjugate-flawed sandstone specimens under coupled static–dynamic compression, thereby providing insight into how conjugate fractures interact to produce tracing tensional joints. Results indicate that the coupled compressive strength and the dynamic elastic modulus of conjugate-flawed rock specimens show remarkable loading rate dependence. For a fixed strain rate, the specimen with a static pre-stress equal to 60% of its uniaxial compressive strength has the highest coupled strength. Besides, both higher static pre-stress and strain rate can induce smaller mean fragment size and greater fractal dimension of the specimen, corresponding to a more uniform distribution of the broken fragments with smaller sizes. When the static pre-stress is lower than 80%UCS, the flawed specimen under a higher strain rate is characterized by higher absorbed energy. However, when the pre-stress equals 80%UCS, the value of the energy absorbed by the specimen in the dynamic loading process is negative due to the release of the preexisting considerable elastic strain energy input from the static pre-loading. As for the failure modes, cracks always penetrate the preexisting ipsilateral flaw tips to form anti-wing cracks. Under dynamic loading, the conjugate-flawed specimen generally shows tensile failure at a low strain rate, while the shear failure dominates at a high strain rate. In addition, based on progressive failure processes of the conjugate-flawed rock specimens, the evolution of tracing tensional joints in the field is discussed.</description><subject>Civil engineering</subject><subject>Complex Fluids and Microfluidics</subject><subject>Compression</subject><subject>Compressive strength</subject><subject>Conjugates</subject><subject>Cracks</subject><subject>Deformation</subject><subject>Dimensions</subject><subject>Dynamic loads</subject><subject>Energy</subject><subject>Engineering</subject><subject>Failure modes</subject><subject>Flawed specimens</subject><subject>Foundations</subject><subject>Fractal geometry</subject><subject>Fractures</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>High strain rate</subject><subject>Hydraulics</subject><subject>Investigations</subject><subject>Joints (timber)</subject><subject>Laboratories</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Mechanical loading</subject><subject>Mechanical properties</subject><subject>Research Paper</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Sedimentary rocks</subject><subject>Soft and Granular Matter</subject><subject>Soil Science & Conservation</subject><subject>Solid Mechanics</subject><subject>Stability analysis</subject><subject>Storage modulus</subject><subject>Strain</subject><subject>Tracing</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWBv8F6dZooo_qYgNrM3EnbQJaRzsBNQdd-CGnARDEOyQRpoZzXtvpI-QY85OOWPZWeBcKUaZ4JRxKQTVO2TCZ5pTzqXc_Z1Fuk8OQqgZ01IoPSGPt2jX0FYWmqTANbxUzofElYl1bT2soEdaNvCKy8Q7-xSSMBQ12j7uvYuaoWviGHroK_vx9r7ctrCpbDxsOo8hVK49JHslNAGPfvqUPFxe3M-v6eLu6mZ-vqAglehpZmeiQKt0rkFCrlLOCuBasRRTYMhQcD4r8hxVGQsUpErarLQq06xEreSUnIy5nXfPA4be1G7wbXxphNapYjGSR5UYVda7EDyWpvPVBvzWcGa-SJqRpIkkzTdJo6NJjqYQxe0K_V_0P65PaPZ4ZQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Feng, Peng</creator><creator>Zhao, Jiachen</creator><creator>Dai, Feng</creator><creator>Wei, Mingdong</creator><creator>Liu, Bo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220501</creationdate><title>Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression</title><author>Feng, Peng ; Zhao, Jiachen ; Dai, Feng ; Wei, Mingdong ; Liu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-7c82bec4696a3a94510ba16405e5a0e0e2118b99e4fe4fa4a543c7fc4760fe643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Civil engineering</topic><topic>Complex Fluids and Microfluidics</topic><topic>Compression</topic><topic>Compressive strength</topic><topic>Conjugates</topic><topic>Cracks</topic><topic>Deformation</topic><topic>Dimensions</topic><topic>Dynamic loads</topic><topic>Energy</topic><topic>Engineering</topic><topic>Failure modes</topic><topic>Flawed specimens</topic><topic>Foundations</topic><topic>Fractal geometry</topic><topic>Fractures</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>High strain rate</topic><topic>Hydraulics</topic><topic>Investigations</topic><topic>Joints (timber)</topic><topic>Laboratories</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Mechanical loading</topic><topic>Mechanical properties</topic><topic>Research Paper</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Sedimentary rocks</topic><topic>Soft and Granular Matter</topic><topic>Soil Science & Conservation</topic><topic>Solid Mechanics</topic><topic>Stability analysis</topic><topic>Storage modulus</topic><topic>Strain</topic><topic>Tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Peng</creatorcontrib><creatorcontrib>Zhao, Jiachen</creatorcontrib><creatorcontrib>Dai, Feng</creatorcontrib><creatorcontrib>Wei, Mingdong</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Peng</au><au>Zhao, Jiachen</au><au>Dai, Feng</au><au>Wei, Mingdong</au><au>Liu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>1765</spage><epage>1784</epage><pages>1765-1784</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>Conjugate flaws widely exist in rock masses and play a significant role in their deformation and strength properties. Understanding the mechanical behaviors of rock masses containing conjugate flaws is conducive to rock engineering stability assessment and the related supporting design. This study experimentally investigates the mechanical properties of conjugate-flawed sandstone specimens under coupled static–dynamic compression, thereby providing insight into how conjugate fractures interact to produce tracing tensional joints. Results indicate that the coupled compressive strength and the dynamic elastic modulus of conjugate-flawed rock specimens show remarkable loading rate dependence. For a fixed strain rate, the specimen with a static pre-stress equal to 60% of its uniaxial compressive strength has the highest coupled strength. Besides, both higher static pre-stress and strain rate can induce smaller mean fragment size and greater fractal dimension of the specimen, corresponding to a more uniform distribution of the broken fragments with smaller sizes. When the static pre-stress is lower than 80%UCS, the flawed specimen under a higher strain rate is characterized by higher absorbed energy. However, when the pre-stress equals 80%UCS, the value of the energy absorbed by the specimen in the dynamic loading process is negative due to the release of the preexisting considerable elastic strain energy input from the static pre-loading. As for the failure modes, cracks always penetrate the preexisting ipsilateral flaw tips to form anti-wing cracks. Under dynamic loading, the conjugate-flawed specimen generally shows tensile failure at a low strain rate, while the shear failure dominates at a high strain rate. In addition, based on progressive failure processes of the conjugate-flawed rock specimens, the evolution of tracing tensional joints in the field is discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-021-01322-6</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-1125 |
ispartof | Acta geotechnica, 2022-05, Vol.17 (5), p.1765-1784 |
issn | 1861-1125 1861-1133 |
language | eng |
recordid | cdi_proquest_journals_2665404511 |
source | Springer Online Journals Complete |
subjects | Civil engineering Complex Fluids and Microfluidics Compression Compressive strength Conjugates Cracks Deformation Dimensions Dynamic loads Energy Engineering Failure modes Flawed specimens Foundations Fractal geometry Fractures Geoengineering Geotechnical Engineering & Applied Earth Sciences High strain rate Hydraulics Investigations Joints (timber) Laboratories Load distribution Loading rate Mechanical loading Mechanical properties Research Paper Rock masses Rocks Sandstone Sedimentary rocks Soft and Granular Matter Soil Science & Conservation Solid Mechanics Stability analysis Storage modulus Strain Tracing |
title | Mechanical behaviors of conjugate-flawed rocks subjected to coupled static–dynamic compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20behaviors%20of%20conjugate-flawed%20rocks%20subjected%20to%20coupled%20static%E2%80%93dynamic%20compression&rft.jtitle=Acta%20geotechnica&rft.au=Feng,%20Peng&rft.date=2022-05-01&rft.volume=17&rft.issue=5&rft.spage=1765&rft.epage=1784&rft.pages=1765-1784&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-021-01322-6&rft_dat=%3Cproquest_cross%3E2665404511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665404511&rft_id=info:pmid/&rfr_iscdi=true |