lsirm12pl: An R package for latent space item response modeling

The latent space item response model (LSIRM; Jeon et al., 2021) allows us to show interactions between respondents and items in item response data by embedding both items and respondents in a shared and unobserved metric space. The R package lsirm12pl implements Bayesian estimation of the LSIRM and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Go, Dongyoung, Park, Jina, Park, Junyong, Jeon, Minjeong, Jin, Ick Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Go, Dongyoung
Park, Jina
Park, Junyong
Jeon, Minjeong
Jin, Ick Hoon
description The latent space item response model (LSIRM; Jeon et al., 2021) allows us to show interactions between respondents and items in item response data by embedding both items and respondents in a shared and unobserved metric space. The R package lsirm12pl implements Bayesian estimation of the LSIRM and its extensions for different response types, base model specifications, and missing data. Further, the lsirm12pl offers methods to improve model utilization and interpretation, such as clustering of item positions in an estimated interaction map. lsirm12pl also provides convenient summary and plotting options to assess and process estimated results. In this paper, we give an overview of the methodological basis of LSIRM and describe the LSIRM extensions considered in the package. We then present the utilization of the package lsirm12pl with real data examples that are contained in the package.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2665383810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665383810</sourcerecordid><originalsourceid>FETCH-proquest_journals_26653838103</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPBcSDemFi8iongW7yXotrSmScym_7cHH-BpYGYWIkOlyqLeIa5EzjxIKbHao9YqE0fLfRxLDPYAJwd3COb5Nh1B6yNYk8gl4NkR9IlGiMTBOyYY_Yts77qNWLbGMuU_rsX2enmcb0WI_jMRp2bwU3RzarCqtKpVXUr13_UFhDM37Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665383810</pqid></control><display><type>article</type><title>lsirm12pl: An R package for latent space item response modeling</title><source>Freely Accessible Journals</source><creator>Go, Dongyoung ; Park, Jina ; Park, Junyong ; Jeon, Minjeong ; Jin, Ick Hoon</creator><creatorcontrib>Go, Dongyoung ; Park, Jina ; Park, Junyong ; Jeon, Minjeong ; Jin, Ick Hoon</creatorcontrib><description>The latent space item response model (LSIRM; Jeon et al., 2021) allows us to show interactions between respondents and items in item response data by embedding both items and respondents in a shared and unobserved metric space. The R package lsirm12pl implements Bayesian estimation of the LSIRM and its extensions for different response types, base model specifications, and missing data. Further, the lsirm12pl offers methods to improve model utilization and interpretation, such as clustering of item positions in an estimated interaction map. lsirm12pl also provides convenient summary and plotting options to assess and process estimated results. In this paper, we give an overview of the methodological basis of LSIRM and describe the LSIRM extensions considered in the package. We then present the utilization of the package lsirm12pl with real data examples that are contained in the package.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homogeneity ; Metric space ; Modelling</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Go, Dongyoung</creatorcontrib><creatorcontrib>Park, Jina</creatorcontrib><creatorcontrib>Park, Junyong</creatorcontrib><creatorcontrib>Jeon, Minjeong</creatorcontrib><creatorcontrib>Jin, Ick Hoon</creatorcontrib><title>lsirm12pl: An R package for latent space item response modeling</title><title>arXiv.org</title><description>The latent space item response model (LSIRM; Jeon et al., 2021) allows us to show interactions between respondents and items in item response data by embedding both items and respondents in a shared and unobserved metric space. The R package lsirm12pl implements Bayesian estimation of the LSIRM and its extensions for different response types, base model specifications, and missing data. Further, the lsirm12pl offers methods to improve model utilization and interpretation, such as clustering of item positions in an estimated interaction map. lsirm12pl also provides convenient summary and plotting options to assess and process estimated results. In this paper, we give an overview of the methodological basis of LSIRM and describe the LSIRM extensions considered in the package. We then present the utilization of the package lsirm12pl with real data examples that are contained in the package.</description><subject>Homogeneity</subject><subject>Metric space</subject><subject>Modelling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPBcSDemFi8iongW7yXotrSmScym_7cHH-BpYGYWIkOlyqLeIa5EzjxIKbHao9YqE0fLfRxLDPYAJwd3COb5Nh1B6yNYk8gl4NkR9IlGiMTBOyYY_Yts77qNWLbGMuU_rsX2enmcb0WI_jMRp2bwU3RzarCqtKpVXUr13_UFhDM37Q</recordid><startdate>20240226</startdate><enddate>20240226</enddate><creator>Go, Dongyoung</creator><creator>Park, Jina</creator><creator>Park, Junyong</creator><creator>Jeon, Minjeong</creator><creator>Jin, Ick Hoon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240226</creationdate><title>lsirm12pl: An R package for latent space item response modeling</title><author>Go, Dongyoung ; Park, Jina ; Park, Junyong ; Jeon, Minjeong ; Jin, Ick Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26653838103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Homogeneity</topic><topic>Metric space</topic><topic>Modelling</topic><toplevel>online_resources</toplevel><creatorcontrib>Go, Dongyoung</creatorcontrib><creatorcontrib>Park, Jina</creatorcontrib><creatorcontrib>Park, Junyong</creatorcontrib><creatorcontrib>Jeon, Minjeong</creatorcontrib><creatorcontrib>Jin, Ick Hoon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Go, Dongyoung</au><au>Park, Jina</au><au>Park, Junyong</au><au>Jeon, Minjeong</au><au>Jin, Ick Hoon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>lsirm12pl: An R package for latent space item response modeling</atitle><jtitle>arXiv.org</jtitle><date>2024-02-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The latent space item response model (LSIRM; Jeon et al., 2021) allows us to show interactions between respondents and items in item response data by embedding both items and respondents in a shared and unobserved metric space. The R package lsirm12pl implements Bayesian estimation of the LSIRM and its extensions for different response types, base model specifications, and missing data. Further, the lsirm12pl offers methods to improve model utilization and interpretation, such as clustering of item positions in an estimated interaction map. lsirm12pl also provides convenient summary and plotting options to assess and process estimated results. In this paper, we give an overview of the methodological basis of LSIRM and describe the LSIRM extensions considered in the package. We then present the utilization of the package lsirm12pl with real data examples that are contained in the package.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2665383810
source Freely Accessible Journals
subjects Homogeneity
Metric space
Modelling
title lsirm12pl: An R package for latent space item response modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=lsirm12pl:%20An%20R%20package%20for%20latent%20space%20item%20response%20modeling&rft.jtitle=arXiv.org&rft.au=Go,%20Dongyoung&rft.date=2024-02-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2665383810%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665383810&rft_id=info:pmid/&rfr_iscdi=true