lsirm12pl: An R package for latent space item response modeling
The latent space item response model (LSIRM; Jeon et al., 2021) allows us to show interactions between respondents and items in item response data by embedding both items and respondents in a shared and unobserved metric space. The R package lsirm12pl implements Bayesian estimation of the LSIRM and...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Go, Dongyoung Park, Jina Park, Junyong Jeon, Minjeong Jin, Ick Hoon |
description | The latent space item response model (LSIRM; Jeon et al., 2021) allows us to show interactions between respondents and items in item response data by embedding both items and respondents in a shared and unobserved metric space. The R package lsirm12pl implements Bayesian estimation of the LSIRM and its extensions for different response types, base model specifications, and missing data. Further, the lsirm12pl offers methods to improve model utilization and interpretation, such as clustering of item positions in an estimated interaction map. lsirm12pl also provides convenient summary and plotting options to assess and process estimated results. In this paper, we give an overview of the methodological basis of LSIRM and describe the LSIRM extensions considered in the package. We then present the utilization of the package lsirm12pl with real data examples that are contained in the package. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2665383810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665383810</sourcerecordid><originalsourceid>FETCH-proquest_journals_26653838103</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPBcSDemFi8iongW7yXotrSmScym_7cHH-BpYGYWIkOlyqLeIa5EzjxIKbHao9YqE0fLfRxLDPYAJwd3COb5Nh1B6yNYk8gl4NkR9IlGiMTBOyYY_Yts77qNWLbGMuU_rsX2enmcb0WI_jMRp2bwU3RzarCqtKpVXUr13_UFhDM37Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665383810</pqid></control><display><type>article</type><title>lsirm12pl: An R package for latent space item response modeling</title><source>Freely Accessible Journals</source><creator>Go, Dongyoung ; Park, Jina ; Park, Junyong ; Jeon, Minjeong ; Jin, Ick Hoon</creator><creatorcontrib>Go, Dongyoung ; Park, Jina ; Park, Junyong ; Jeon, Minjeong ; Jin, Ick Hoon</creatorcontrib><description>The latent space item response model (LSIRM; Jeon et al., 2021) allows us to show interactions between respondents and items in item response data by embedding both items and respondents in a shared and unobserved metric space. The R package lsirm12pl implements Bayesian estimation of the LSIRM and its extensions for different response types, base model specifications, and missing data. Further, the lsirm12pl offers methods to improve model utilization and interpretation, such as clustering of item positions in an estimated interaction map. lsirm12pl also provides convenient summary and plotting options to assess and process estimated results. In this paper, we give an overview of the methodological basis of LSIRM and describe the LSIRM extensions considered in the package. We then present the utilization of the package lsirm12pl with real data examples that are contained in the package.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homogeneity ; Metric space ; Modelling</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Go, Dongyoung</creatorcontrib><creatorcontrib>Park, Jina</creatorcontrib><creatorcontrib>Park, Junyong</creatorcontrib><creatorcontrib>Jeon, Minjeong</creatorcontrib><creatorcontrib>Jin, Ick Hoon</creatorcontrib><title>lsirm12pl: An R package for latent space item response modeling</title><title>arXiv.org</title><description>The latent space item response model (LSIRM; Jeon et al., 2021) allows us to show interactions between respondents and items in item response data by embedding both items and respondents in a shared and unobserved metric space. The R package lsirm12pl implements Bayesian estimation of the LSIRM and its extensions for different response types, base model specifications, and missing data. Further, the lsirm12pl offers methods to improve model utilization and interpretation, such as clustering of item positions in an estimated interaction map. lsirm12pl also provides convenient summary and plotting options to assess and process estimated results. In this paper, we give an overview of the methodological basis of LSIRM and describe the LSIRM extensions considered in the package. We then present the utilization of the package lsirm12pl with real data examples that are contained in the package.</description><subject>Homogeneity</subject><subject>Metric space</subject><subject>Modelling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPBcSDemFi8iongW7yXotrSmScym_7cHH-BpYGYWIkOlyqLeIa5EzjxIKbHao9YqE0fLfRxLDPYAJwd3COb5Nh1B6yNYk8gl4NkR9IlGiMTBOyYY_Yts77qNWLbGMuU_rsX2enmcb0WI_jMRp2bwU3RzarCqtKpVXUr13_UFhDM37Q</recordid><startdate>20240226</startdate><enddate>20240226</enddate><creator>Go, Dongyoung</creator><creator>Park, Jina</creator><creator>Park, Junyong</creator><creator>Jeon, Minjeong</creator><creator>Jin, Ick Hoon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240226</creationdate><title>lsirm12pl: An R package for latent space item response modeling</title><author>Go, Dongyoung ; Park, Jina ; Park, Junyong ; Jeon, Minjeong ; Jin, Ick Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26653838103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Homogeneity</topic><topic>Metric space</topic><topic>Modelling</topic><toplevel>online_resources</toplevel><creatorcontrib>Go, Dongyoung</creatorcontrib><creatorcontrib>Park, Jina</creatorcontrib><creatorcontrib>Park, Junyong</creatorcontrib><creatorcontrib>Jeon, Minjeong</creatorcontrib><creatorcontrib>Jin, Ick Hoon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Go, Dongyoung</au><au>Park, Jina</au><au>Park, Junyong</au><au>Jeon, Minjeong</au><au>Jin, Ick Hoon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>lsirm12pl: An R package for latent space item response modeling</atitle><jtitle>arXiv.org</jtitle><date>2024-02-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The latent space item response model (LSIRM; Jeon et al., 2021) allows us to show interactions between respondents and items in item response data by embedding both items and respondents in a shared and unobserved metric space. The R package lsirm12pl implements Bayesian estimation of the LSIRM and its extensions for different response types, base model specifications, and missing data. Further, the lsirm12pl offers methods to improve model utilization and interpretation, such as clustering of item positions in an estimated interaction map. lsirm12pl also provides convenient summary and plotting options to assess and process estimated results. In this paper, we give an overview of the methodological basis of LSIRM and describe the LSIRM extensions considered in the package. We then present the utilization of the package lsirm12pl with real data examples that are contained in the package.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2665383810 |
source | Freely Accessible Journals |
subjects | Homogeneity Metric space Modelling |
title | lsirm12pl: An R package for latent space item response modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=lsirm12pl:%20An%20R%20package%20for%20latent%20space%20item%20response%20modeling&rft.jtitle=arXiv.org&rft.au=Go,%20Dongyoung&rft.date=2024-02-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2665383810%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665383810&rft_id=info:pmid/&rfr_iscdi=true |